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ABSTRACT 
The growing debate on regulation in the work place calls for an improvement in the 
analytic techniques used to assess occupational risks and mortality. The intent of 
this article is to investigate a family of hazard models that may be employed in this 
effort. The underlying problem is first placed in context with a discussion of risk 
attitudes and the dangers of exposure. Next, proportional and additive hazard 
models are introduced which combine a standard (but unknown) hazard function 
with a set of explanatory variables. The family is developed with the aid of a 
parameterized link function, while maximum likelihood is used to obtain coefficient 
estimates. After describing the methodology an application is given for the case 
where only two samples of grouped data are available. A related example is then 
worked out using survival data collected on persons employed in the asbestos 
processing industry. The results confirm both the flexibility and sensitivity of the 
approach while leaving open the possibility of further refinements. 

When an activity or substance is deemed risky, implicit in the judgement is the 
likelihood that exposure will produce some amount of harm or damage. 
Accordingly, risk can be defined as the probability of incurring a unit loss per 
unit time [1], where loss may be measured in terms of injuries, monetary 
penalties, or total social costs. This definition then involves the integration of 
probability of occurrences, the severity or magnitude of the exposure or event, 
and the range of resultant personal injuries and related costs. The determination 
of insurance premiums for workers engaged in dangerous occupations such as 
coal mining illustrates these components. Rate structures are based on the 
frequency of accidents, the distribution and size of their occurrence, and the 
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extent of personal loss [2]. Discussions of safety and exposure potential often 
fail to make these distinctions although they are crucial in any decision analysis. 

From a public point of view, many of the programs undertaken by govern­
ment have the dual objective of increased protection and risk reduction for the 
individual. The benefits of such programs are often difficult to determine, 
though, because of a lack of information on the valuation people place on a 
safer environment. In addition, an incomplete understanding of the relationships 
between exposure and damage tends to undermine policy formulation and strain 
consensus. For a more thorough discussion of risk assessment and the specifics 
of data requirements see Bard [3], Fischoff [4], and Sage and White [5]. 

Because of the basic data limitations, it is important that the most sensitive 
analytical techniques be used in gauging risk. A procedure frequently employed 
in the analysis of occupational mortality data compares the number of deaths 
observed in the study population with the number expected, based on some 
control group. More detailed approaches designed to take into account 
intervening variables have also been investigated using markov chains (e.g., see 
Shachtman, et al. [6] ). 

A third procedure extending Cox's notion of proportional hazard models [7] 
has recently proven effective in fitting nonlinear forms (e.g., see Hennessey 
[8] ). The purpose of this article is to examine a family of these models in an 
attempt to quantify the risks associated with certain hazardous occupations. In 
so doing, we will present a methodology based on grouped data and the 
corresponding interval approximations. To begin the underlying problem is placed 
in context by discussing the nature of risk. Some of the issues surrounding the 
biological effects of exposure and the need for a better understanding of dose-
response relationships will be highlighted. Finally, an application based on the 
two-sample case and an example drawn from asbestos workers' survival data will 
be discussed. The model is shown to provide a good fit for a range of parameter 
values. 

NATURE OF RISK 
The first component of risk, probability of occurrence, has three major 

facets: space, population, and time dependency. The spatial characteristics of 
exposure can range from local damage to world-wide catastrophe. For example, 
the persistent and highly mobil nature of some waste streams pose proximate 
risks to soil fertility and water supplies, while deposits from acid rain have a 
global aspect. A second facet of exposure probability is determined by 
population traits. In many situations, selected group characteristics may be 
identified as the determinants of the risk bearing population. Among these are 
heredity, age, occupation, and sex. Time dependence may be classified as either 
continuous or periodic (as well as cumulative or noncumulative) to distinguish 
whether a hazard exists over a substantial time horizon and whether effects of 
separate exposure to the hazard for various doses are cumulative. 



OCCUPATIONAL EXPOSURE / 295 

Generally, risks are evaluated intuitively rather than subjected to an explicit 
analysis. For the case of the individual who is contemplating a potentially 
dangerous activity where the outcome will affect him alone, he is wont to use a 
personal value system to evaluate the possible loses. When the risks have wider 
ranging consequences, the criteria are likely to be different. Lowrance points 
out some of the issues that surface in public policy making where a different 
value system is applied. These fall into the following nonmutually exclusive 
categories [9] : 

• technically complex risks comprehensible only to highly trained people; 
• risks that can be significantly reduced by applying technology; 
• risks that constitute public problems and whose technical components 

need to be distinguished explicitly from their social and political 
components so that their responsibilities are assigned properly; 

• risks whose possible consequences appear to be so grave or irreversible that 
prudence dictates the urging of extreme caution, even before the risks are 
known precisely; and 

• risks that result from technological intrusions on personal freedom that 
are made in pursuit of safety. 

Many of these issues are marked by an aggregation of preferences, limited 
knowledge, uncertainty, irreversibility, and the distribution of benefits versus 
costs. In trying to formulate acceptable social policy, it is often difficult to 
separate these factors from individual interpretations and biases. 

BIOLOGICAL EFFECTS OF EXPOSURE 
An individual's perception and appreciation of risks and benefits vary widely 

(e.g., see [10-12] ). When one has "lived with" the risk (as does a toxic chemical 
worker, for instance) and when the activity is an accepted practice of society, 
awareness of it may be less than for risks of unfamiliar activities. The time lag 
between exposure to the hazard and the occurrence of injury also affects the 
individual's perception. 

This is a vital point in light of the persistent and bioaccumulative nature of 
many hazardous materials. The risks of drinking water contaminated with trace 
metals would seem far less acceptable if the health consequences were 
experienced immediately. It is a common tendency to heavily discount future 
risks both to ourselves and succeeding generations. 

Toxicity 
Any substance if taken in large enough concentrations will produce adverse 

health effects. Although the relationships between individual exposures and the 
degrees of injury for many substances are not known precisely, and are difficult 
to quantify, they do possess certain general characteristics. For many types of 
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hazards two thresholds may be defined. The first places a lower bound on 
exposures below which no damage will be experienced; the receiving medium 
responds elastically. The second provides an upper bound above which injury or 
death will occur. For those situations where the two thresholds are relatively 
close in value (such as for brain damage resulting from the inhalation of carbon 
monoxide) the body is said to be quite resilient [9]. This implies that recovery 
from a nonlethal dose is usually rapid. 

In actuality, more than two thresholds may exist, each being a function of the 
particular receiving medium and dosage. As an example, consider the biological 
effects of cadmium on humans [13]. Basically, cadmium is a highly toxic 
element which reaches the body through the food chain and accumulates in 
various organs such as the liver. It is identified as a stock pollutant because it 
doesn't degrade in the environment; its toxicity is a direct function of body 
weight. At fairly low densities it has been implicated in renal dysfunction and 
cardiovascular disease; in massive doses its effects are dramatic, producing a 
softening and eventual collapse of the skeletal structure. 

Dose-Response Relationships 

The amount of a substance required to cause harm varies with its chemical 
and physical properties and the sensitivity of the affected organism. Thus, the 
dose of one chemical required to produce death in a particular species, say a 
guinea pig, will be different from that of another chemical for the same species; 
the lethal dose of one chemical also will vary among species (e.g., monkey, dog, 
and human). In addition, not all animals or humans respond to the same 
concentration or exposure route in a similar fashion. Nitrates in water, for 
example, can be ingested by an adult human with no adverse effect, but for an 
infant the same concentrations can be fatal. Finally, some chemicals are toxic if 
inhaled, but present no risk if taken internally or applied to the skin. 

The common measure of acute toxicity is LD50, the amount (mg/kg body 
weight) that is lethal for 50 percent of the test population. Differences in 
harmful concentrations are particularly significant when considering constituents 
of hazardous materials, as illustrated in Table 1. All of the compounds presented 
in this table have been declared hazardous by the Environmental Protection 
Agency (EPA) based on results from controlled studies with rats centering on 
toxicity, carcinogenicity, mutagenicity, and teratogenicity [14]. The amount of 
each substance that is seen to cause death in 50 percent of the test population 
varies greatly and ranges from 3 mg/kg for cyanide to 5000 mg/kg for toluene. 
It is interesting to note that the lethal dose for a commonly used product — table 
salt — is equal to 3000 mg/kg, an amount less than that for toluene. Because of 
the lack of evidence that salt is carcinogenic, mutagenic or teratogenic, however, 
it has not been designated a hazardous substance. 

The quality of an adverse effect (i.e., immediate death, reversible or 
irreversible illness) is also influenced by the exposure period. For some types of 
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Table 1. Toxic Doses for Selected Hazardous Materials 

Compound LD50
a 

Cyanide 3 
Phenylmercuric Acetate 30 
Dieldrin 46 
Pentachlorophenol 50 
DDT 113 
Naphthalene 1780 
Saccharin 1820 
Toluene 5000 

3 Amount (mg/kg body weight) that is 
lethal for 50 percent of the test population 
of rats fol lowing oral administration. 

substances unfavorable consequences may not be observed or may be much less 
serious when the same dose is encountered over a long time period. Although 
table salt can produce severe effects at extremely high doses, small amounts 
ingested over a lifetime do not present health problems, except for extremely 
sensitive individuals. The opposite problem of persistence is taken up in the 
next section. 

MODEL DEVELOPMENT 
A standard approach to assessing mortality in an occupational setting is to 

compare the number of deaths observed, O, with the number expected, E, as 
inferred from a control population. The quantity 100 X O/E is known as the 
standardized mortality ratio (SMR). Under the null hypothesis, the test statistic 
(O - E)2/E is asymptotically chi-square distributed with one degree of freedom 
(df). This method of analysis can be applied to the entire population, but may 
be more informative if restricted to a specific segment such as those persons who 
have experienced a certain level of exposure. 

As an alternative to the SMR approach, we will investigate a procedure based 
on an extension of the proportional hazard models first proposed by Cox [7]. 
The procedure involves comparing exposures received by workers who either die 
or suffer a particular disease with those who remain healthy but continue to be 
at risk. Here, "comparable" is used in a general sense to mean similar with 
respect to age and other variables, which would, of course, need to be specified 
precisely in any given analysis. 

To begin, some basic notation along with the general form of the model will 
be presented. 
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Notation 

Let ( t . δ:) , j = l η, be an observed sample of failure times with δ; = 0 
indicating a right-censored observation and δί = 1 indication a failure. It will be 
assumed that each individual has an associated (known) vector of covariates or 
explanatory variables Zj = (z^ zpj) which are time-independent, and that 
the underlying failure time density f(t:z) is continuous. The survivor or 
reliability function will be denoted by S(t:z) and the corresponding hazard 
function by h(t:z) = f(t:z)/S(t:z). 

Grouping of Continuous Data 

In many instances the only survival data available are tabulated by group for a 
given epoch, rather than by individual at a discrete point in time. In order to 
accommodate this situation it will be necessary to partition the time axis 
accordingly. Let I; , i = 1,. . . , m, be the resulting intervals, where 
Ij = [tj_j, ti), t0 = 0 and tm is defined to be greater then the last failure. The 
conditional probability, call it θ-ν that an individual fails during the i th study 
interval, Ij, given that he was alive at time ti—1 may be expressed as 

öi(z) = P ( t i _ 1 < T < t i | T > t i _ 1 ) , (1) 

where T is the time to failure random variable. Note the dependence of Θ; on z. 
It will be assumed that for a given z, 0j(z) does not vary with t over the partition 
Ij so it is easy to see that 

e i (z)=l-S(t i :z) /S(t i_1 :z) . (2) 

This expression takes different forms depending on the representation given for 
the hazard function. Note that 

S(t:z) = exp j - / h(u:z)du j . (3) 

The Models 

We will now develop a collection of models based on the two specialized 
versions of the hazard function below: 

h(t:z) = ho(t)exp0?'z) (4) 

and 

h(t:z) = ho(t) + 0'z (5) 

where ß is a p X 1 vector of unknown parameters and h0(t) is an unknown 
hazard function for the standard set of conditions z = 0. Making use of (1) - (3), 
these terms can be rewritten in the form of a linear regression model. For (4) 
we get 
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ln[-ln { 1 - 0j(z) J ] = ln[-ln j 1 - 0^(0) } ] + fix (6) 

and for (5) 

-In { 1 - 0i(z) } = -In { 1 - 0j(O) } + ß'zft - t M ) . (7) 

If the interval partitions are taken to be of unit length; that is, tj — tj—1 = 1 (i = 
1 , . . . , m), then the second term on the right hand side of (7) reduces to that of 
(6). 

The above formulations can be generalized to incorporate time trends as 
follows: 

In [-In { l - e i ( z ) } ] = o i + k i j ) ( t ^ z (8) 

and 

-In j 1 - 0i(z) } = o j + k Î (tf)U'z. (9) 

Expressions (8) and (9) embody an asymmetric transformation of the 
conditional probability or interval hazard function 0j(z). In order to construct 
a family of such transformations on which an additive representation of the 
hazard function can be assessed for consistency with the data, a link function 
will be introduced: 

Υλ(θ)= Una_^i]^i 1 0 < λ < 1 (10) 

When λ = 0, this expression is equivalent to the log-log transformation given by 
(8); when λ = 1, it reduces to the negative complementary log transformation 
given by (9). Thus, the link function may be used to define a comprehensive 
family of additive models. 

We now propose to fit the model 

Vj0i(z)} = <*i + Σ (tfr/3'z, (11) 
k=0 

which may be easily inverted to give 

[ 1 - exp I -(1 + XU;)1/X I 
0j(z)={ l , XUi>-l and ΧΦ0 otherwise. (12) 

where Uj is equal to the right-hand side of (11). 

Analytic Procedure 

Assuming that the failure pattern of the subjects has a binomial distribution, 
the theory of generalized linear models can be invoked to estimate the 
coefficients of (11) as λ is parametrically varied between zero and one (see 
Nedler and Wedderburn [15] ). Note that a least squares fit will yield maximum 
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likelihood estimates for a and ß; if an estimate of λ is desired, a sequential 
procedure would have to be used due to the nonlinearity of the link function. 
Once a fit is obtained, the expected number of individuals failing during I; can 
be found as follows: 

Ai = niöi(z), i= 1 , . . . ,m 

where ni is the total number at risk during Ij. 
For either grouped or individual data, the proposed methodology is 

summarized below: 
1. partition the time axis into intervals [ti—1, tj); 
2. form a frequency table of observed failures and numbers at risk; 
3. form the appropriate partial likelihood (see (13) below); and 
4. fit the generalized linear model defined by the partial likelihood and the 

link function (10) for various values of λ. 
It should be pointed out that the above steps can be further generalized in a 
straightforward manner for time dependent explanatory variables if it is 
assumed that they are constant over each interval. The question still remains, 
though, as to the choice of interval widths, should it be a prerogative of the 
analyst. In such cases, an "optimal" spacing may be obtained for each set of 
data by making a tradeoff between the loss of information and the over-
parameterization of the model. 

AN APPLICATION BASED ON THE TWO SAMPLE-CASE 
For simplicity the two-sample case will be used to illustrate the methodology. 

Suppose that there is just one z variable, p = 1, which takes the values 0 or 1 for 
either of two groups. Further, suppose that initially there are n = nj + tij 
individuals at risk, n; in Group j (j = 1,2). During the i* period an individual 
may fail, be censored or survive into the next period. For the j t h group, denote 
the observed number at risk in the 1th interval by riy, the observed number of 
individuals failing by fy, and the corresponding number of censored individuals 
bycjj. This gives η ( ί + 1 ^ = n;j - fjj - cy (1 < i + 1 < m ; j = l,2)andmjj = nj. It 
will be assumed that all censoring takes place at the end of the interval, although 
other possibilities can be taken into account with little alteration of the basic 
approach. A final assumption will be that censoring and failure are generated by 
independent mechanisms. 

Let the random variable Cy represent the number of individuals censored in 
the j * group just prior to the (i - I ) * interval (Cy = 0), and let Dy represent 
the number of failures in the 1th interval for Group j . Denote by öy the 
probability that an individual at risk in the j * group fails during the i th interval, 
having survived until the beginning of that interval. Then if the failures are 
independent, Cox has defined the partial likelihood for the sequences j CQ, Ό^ j 
and ( C ^ D ß } tobe [16]: 
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L= Π Π ("« ) (OU) f i j (l - ö)n« " f« (13) 
i = l j = l fij J 

Note that the full likelihood can be obtained from (13) if data are available on 
the individual subjects. Now, except for a constant, the log likelihood may be 
written as 

m 2 , i 
£ = Σ Σ fylnfly + (ηϋ - ^)1η(1 - fly) , (14) 

i = l j = l 

where 

k = 0 

and 

11, j = 2 

The objective is to represent the probabilities 0 1 1 ; 0 1 2 , . . . , ö m i , öm2 in 
terms of the regression parameters a and ß which, in part, take into account the 
difference between groups. For various values of λ, this will be achieved in the 
usual manner by maximizing (14) with respect to a and β (see Nedler and 
Wedderburn [15] for the details). Recall that by choosing equally spaced time 
points, we can compare the fit of the proportional hazard model to others in the 
family. 

In this formulation, the customary tests for model adequacy and parameter 
significance are based on the "deviance" (see Elandt-Johnson and Johnson [17] ): 

deviance = 21og(Lc/Lf), 

where Lc is the likelihood of the model to be tested and Lf is the likelihood of 
the fully parameterized model (i.e., the model that would in theory give perfect 
predictions). The mean square error (MSE) computed from the difference 
between the observed and estimated number of failures will also be presented. 
Note that a more powerful test for λ = 0 is available based on the efficient score 
statistic given by 3δ/9λ, but will not be taken up here (see [16] ). 

AN EXAMPLE 
Asbestos is a mineral found in many rock formations, which, when separated, 

becomes a soft, fibrious material of great utility. There are more than 3000 as­
bestos based products manufactured today, with the construction, automotive, 
and textile industries being the major users. If air containing asbestos dust is in­
haled, the small, sharp fibers may work their way into the lung tissue and remain 
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Table 2. Grouped Failure Data for Asbestos Exposure 

Group 1 Group 2 

f Exposure 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

f 
0 
1 
0 
2 
2 
2 
1 
3 
2 
2 

nb 

221 
218 
213 
206 
201 
194 
191 
183 
174 
165 

f 

1 
1 
2 
4 
5 
4 
6 
8 
11 
13 

n 

320 
314 
305 
298 
288 
271 
259 
242 
217 
198 

3 f = observed failures. 
n = number at risk. 

embedded for life. This can lead to asbestosis, a lung disease characterized by a 
scarring and thickening of the lung wall which makes breathing difficult and 
places a severe strain on the heart. More serious, though, asbestos has been 
implicated in cancer of the respiratory system, and mesothelioma, a rare form of 
cancer of the chest or abdominal lining which is usually fatal within one year. In 
all cases, the danger varies with the intensity of the dust, the size of the fiber, 
and the susceptibility of the individual. 

Table 2 presents two sets of aggregate survival data taken from an EPA study 
on the health problems of asbestos workers [18]. A failure will be defined as 
being afflicted with one of the above three diseases. Group 1 represents those 
persons who were employed in plants or facilities where the material was being 
processed but did not have direct contact with its use. Exposure levels were 
relatively low. Group 2 consists of those persons who worked directly with the 
material and thus experienced high exposure. 

Because no failures were observed prior to year ten, the data are recorded 
from year eleven onward. From the table it can be seen that after eleven years, 
of the 320 persons at risk in Group 2, one failed and five were censored, leaving 
314 at risk in the twelfth year. In an approximate sense, it seems that Group 1 
failures grow linearly, while those of Group 2 grow quadratically. 

Using the above data, a number of different models were fitted for values of λ 
between zero and one. R2 values ranged from a low of 0.84 to a high of 
approximately 1.0, with the corresponding F-ratios being significant at the .01 
level throughout. Highlights of the results are displayed in Table 3. It appears 
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Table 3. Results for Various Models 

Model 

1 
2 
3 
4 
5 
6 
5 
8 
9 

10 
11 
12 
13 
14 

λ 

0 
0 
0 
0 

0.2 
0.2 
0.5 
0.5 
0.8 
0.8 
1 
1 
1 
1 

Parameters 

α\· a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 
a 

.ßo 

.ßo.ß, 

.ßo.ßi.ß2 

■ ßo 
, 0 ο . 0 ι , 0 2 

• ßo 
. ßo. 01 . ß2 

.ßo 

.00 .0 , , 02 

.00 

.00.01 

.00.01,02 

Deviance 

4.48 
12.36 
6.75 

10.93 
1.92 
1.57 
1.88 
1.16 
2.03 
1.08 
4.37 
2.61 
1.24 
1.14 

MSE 

2.51 
5.82 
3.07 
5.42 
1.44 
1.12 
1.41 
0.55 
1.57 
0.48 
2.37 
1.72 
0.91 
0.52 

Degrees of 
Freedom 

10 
9 
8 
7 
9 
7 
9 
7 
9 
7 

10 
9 
8 
7 

Table 4. Comparison of Observed Failures with Model Estimates 

Years of 
Exposure 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Observed 

0 
1 
0 
2 
2 
2 
1 
3 
2 
2 

Group 1 

M4 

0.0 
0.1 
0.0 
0.7 
1.3 
1.6 
1.6 
3.1 
2.3 
1.6 

Fitted 
M8 

0.0 
0.4 
0.2 
1.9 
2.0 
1.6 
1.3 
2.4 
2.2 
2.1 

M11 

0.4 
0.9 
0.7 
2.4 
2.7 
2.4 
2.7 
4.5 
5.4 
6.5 

M13 

1.2 
1.1 
0.4 
1.6 
1.5 
0.7 
0.5 
2.0 
2.6 
3.4 

Observed 

1 
1 
2 
4 
5 
4 
6 
8 

11 
13 

Group 2 

M4 

0.4 
24.1 

0.1 
12.2 
7.9 
5.0 
3.7 
7.8 
9.4 

15.9 

Fitted 
M8 

0.9 
1.9 
0.9 
4.3 
4.9 
4.7 
5.2 
9.2 

10.6 
12.8 

M11 

0.5 
1.2 
1.0 
3.5 
3.9 
3.4 
3.7 
3.4 
6.8 
7.9 

M13 

0.0 
0.8 
1.4 
4.6 
5.8 
5.8 
6.7 
9.3 

10.3 
11.4 
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that the proportional hazard model, originally stated in (4) and realized when 
λ = 0 for the link function, is inferior to almost every formulation without 
regard to the number of (3 parameters the latter contains. This is supported by an 
examination of both the deviance and mean square errors, where values less than 
1.5 and 1.0, respectively, are considered good. In addition, all models that 
included only the α; terms proved to be relatively inadequate. To illustrate the 
point, consider the additive model λ= 1 with a linear time trend [Model 13]. 
The accompanying estimates of 0O and β± are -0.0131 (SE = 0.0071) and 
0.0052 (SE = 0.0011) which are highly significant. The point is corroborated by 
examining the performance of Model 11 which only contains the a, parameters. 
(In all cases the a;'s turned out to be significant.) By contrast, the estimates for 
00,0!, and 02 of Model 4 are 11.027 (SE = 4.471), -2.925 (SE = 1.867), and 
0.204 (SE = 0.165), only the first of which is significant. 

Table 4 compares observed failures for the two groups with the estimates 
obtained from Models 4, 8, 11, and 13. The inclusion of a time trend makes a 
substantial difference in the performance of each. Model 4 performs adequately 
for Group 1, but is highly erratic for Group 2, showing oscillatory behavior in 
the early stages and then switching to geometric growth. Model 11, containing 
no β parameters, attempts a compromise between the two groups and 
consequently overestimates the first and underestimates the second. The 
remaining two models, 8 and 13, do a superior job in fitting the data yielding 
mean square errors of 0.48 and 0.91, respectively. In fact, all models with at 
least a linear time trend and a value of λ greater than or equal to 0.5 do quite 
well at prediction as measured by both the deviance and MSE. 

CONCLUSIONS 
The need for a better understanding of the relationships between exposure 

and mortality is essential to the continuing public debate on regulation of 
hazardous substances. This article has attempted to develop a collection of 
models that can be used in this effort, which are at once flexible and effective, 
and yet completely empirical. Using maximum likelihood estimation, we 
demonstrated that highly accurate fits can be obtained for certain parametric 
forms. Although this was done for the two-sample case only, had the data been 
further disaggregated by, say age, smoking habits, or job classification, it would 
have been possible to include these additional explanatory variables in the 
analysis, perhaps giving a more powerful result. 

One criticism that can be leveled at the approach stems from an interpretation 
of the models when 0 < λ < 1. In this interval, the hazard does not have a clear 
meaning. Nevertheless, this point may be outweighed by performance. Finally, 
the method may prove effective in situations where accelerated life testing is 
important and only a limited amount of grouped data is available. The ability to 
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include polynomial time trends and to easily estimate the underlying reliability 
function underscores this point. 
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