A PREDICTIVE MODEL FOR ANAEROBIC FILTERS TREATING LOW STRENGTH DOMESTIC WASTEWATERS*

SETH DAVID ABRAMSON, PH.D.

530½ N. San Vincente Blvd. Los Angeles, California

ABSTRACT

The anaerobic filter pilot plant was operated for two years using low strength domestic wastewater. The pilot plant used two upflow reactors filled with a PVC packing material which supported the growth of submerged microbial films. A mathematical model was developed using first order mass balances of the major components produced both biologically and chemically, including CH₄, CO₂, and N₂. The model used characteristics of the influent stream to predict characteristics of both the effluent liquid and gas phases, and was programmed using the Crank-Nicolson algorithm. Predicted results were consistent with experimental data. Using optimized parameters of dispersion, velocity, and a first order reaction constant, the model predicted effluent treatment levels to within 5 percent of the data, with treatment efficiencies of 40–90 percent TOC removal, depending on influent concentrations and retention times. Operation of the model would determine conditions necessary for achieving secondary treatment standards of <30 mg/1 effluent BOD₅ and TSS on a monthly average for a variety of biodegradable substrates. Future applications would eliminate lengthy pilot plant studies to predict anaerobic filter performance.

INTRODUCTION

Anaerobic filters, first developed by Coulter [1], Schroepfer [2], Young and McCarty [3] and Pretorius [4], have been used to treat medium and high strength wastes using domestic raw sewage as influent substrate. Recently Chung [5] and Kobayaski [6] have investigated the use of anaerobic filters for low strength waste treatment, reporting favorable results. This investigation used

* Written from Doctoral Dissertation (1986), Water Resources Program, Department of Civil Engineering, University of Los Angeles at California, Los Angeles, California 90024.

201

© 1987, Baywood Publishing Co., Inc.

anaerobic filter pilot plants to treat low strength raw domestic wastewater, with the goal of demonstrating the filter's ability to achieve secondary treatment standards.

The reactors ran continuously for over two years and were sampled daily for liquid and gas phase data. Treatment efficiencies and biogas production rates at various retention times were investigated. Each reactor was filled with a PVC packing material which supported the growth of submerged microbial films. The packing material was corrugated with 1 inch openings and had a specific surface area of greater than 99 percent. Effluent drained near the top of each upflow reactor, leaving a one-half foot space for the gas phase. Gas production was measured through wet test meters while gas composition was analyzed by gas chromatography. Influent and effluent wastewaters were analyzed for pH, TOC, TSS, alkalinity, sulfides and ammonia every two days, for a total of 679 days of experimental data collection.¹ Other analyses were made less frequently, including conductivities, oil-grease and volatile fatty acid determinations.

The data were used to develop and verify a first-order kinetic model considering dispersion and reaction. The dispersion equation was solved using Crank-Nicolson. Mass balances were derived from the ionic-equilibrium of the liquid phase along with solubility characteristics of the gas phase and were used to predict effluent water quality and gase phase purity. A dispersion coefficient was determined experimentally through tracer studies. The optimized dispersion coefficient was obtained using the influence coefficient method. The velocity constant was calculated from flow rates, while the first-order reaction constant was estimated from treatment efficiency.

Results have shown that gas phase composition was primarily N_2 , with CH_4 never composing more than 20 percent of the total, due in part to the highly soluble CH_4 escaping with the effluent as well as N_2 being present at saturation levels. This was to be expected because lower effluent substrates levels usually mean lower CH_4 gas levels. Ammonia concentrations in the influent ranged from 5 to 25 ppm, with a 10-20 percent increase in the effluent. Losses of less than 10 percent may have occurred in the analyses of ammonia and methane during the time samples were taken and the time the analyses were made, due to the highly volatile nature of these gases, although precautions were taken to prevent this. Influent alkalinity levels ranged from 100 to 200 ppm, while sulfides varied from 0.5 to 5.0 ppm, with higher levels in the effluent due to bacterial reduction of sulfates to sulfides and hydrogen sulfide under anaerobic conditions. All these data are within the range of what has been reported for domestic wastewaters.

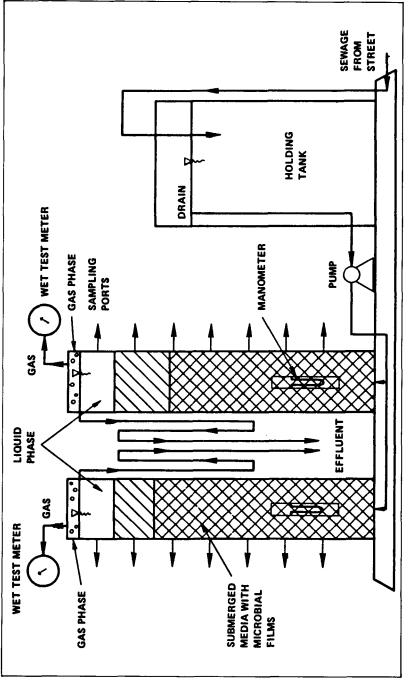
The completed model with optimized parameters predicted effluent TOC treatment levels to within 5 percent of experimental data, dependent on the

¹ TOC analysis was substituted for BOD₅ (BOC₅/TOC ratio varies from 1.0 to 1.6 for untreated domestic wastewaters).

value of the first order reaction constant. Thus, the model will help design anaerobic filters for the treatment of low strength substrates, predicting treatment efficiencies as a function of retention time as well as determining effluent water quality and gas phase purity.

MATERIALS AND METHODS

Anaerobic Filter Pilot Plant


The anaerobic filter pilot plant is shown in Figure 1. The sewage was pumped from a street pipeline to a holding tank on the 4th floor roof. The pipeline contained a grinding pump which broke up larger particles while the tank was equipped with a mixing rake and served as a settling tank. A second pump sent substrate directly to the bottom of the upflow reactors.

The reactors were 8 feet and 7.5 feet high, respectively, and had diameters of just under 2 feet, with sampling ports installed at regular intervals to study the effects of treatment verses height up the reactor column. Treated effluent drained one-half foot from the reactor top, while the remaining top space was used for gas collection.

Gas collected above the effluent drain was measured through wet test meters. The meters required pressures of at least two inches of water to operate. A manometer was attached to each reactor to carefully monitor pressure due to the high combustibility of methane (average tank pressures were in the range of 3 to 6 inches of water). Gas taken for GC analysis was sampled before being measured through the meters to avoid the possibility of contamination with either previous gases collected in the meters or with the meters themselves, which tended to corrode after several months and needed to be taken apart and cleaned. After passing through the meters, gas was vented to the atmosphere.

The plant originally consisted of a single anaerobic reactor, but was later expanded to include a second reactor operating in parallel. Both were packed with the corrugated PVC material for submerged film growth. Each reactor was seeded with digested sludge from the Hyperion Wastewater Treatment Plant in Los Angeles, a process which lasted approximately four weeks. Five gallons of seeding material was siphoned to each reactor, which were then filled to capacity with domestic sewage pumped from the street. Reactors were considered operational when pressures and gas production increased to consistent daily levels. A schedule of retention times during the course of the study is given in Figure 2.

Reactor Number 1 was operational for over a year before Reactor Number 2 was brought on-line. This study began at day 373 after the start-up of Reactor Number 1.

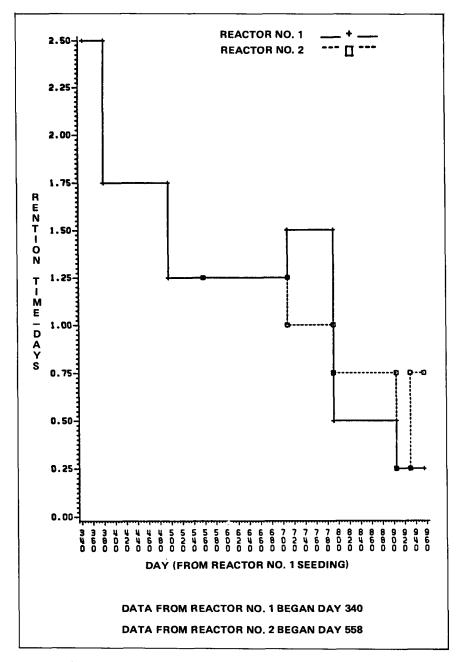


Figure 2. Schedule of retention times for Reactor No. 1 and Reactor No. 2.

Laboratory Analyses

Laboratory analyses were performed following procedures in *Standard Methods for Water and Wastewater Analysis* [7]. Gas composition including percent CH_4 , CO_2 , and N_2 was measured with a Varian 920 series chromatograph equipped with a thermal conductivity detector, using a 3.6 meter stainless steel column packed with activated carbon. TOC measurements were made with an Ionics Model 1270 Analyzer, which vaporized organic carbon contained in aqueous samples to CO_2 . Measurement of resulting CO_2 was made by IR spectrophotometry to determine total organic content.

Tracer experiments were performed using a Perkin Elmer Atomic Absorption System Model 303 with a lithium lamp to read pulses of LiCl. Tracer curves were integrated for determination of dispersion and velocity coefficients.

Operational characteristics, including gas and liquid phase flow rates, hydraulic retention times and reactor pressures were measured on-line.

MATHEMATICAL PREDICTIVE MODEL

Dispersion Equation

The dispersion equation with diffusion, convection, and reaction terms was used to model flow in the liquid phase.

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} + V \frac{\partial c}{\partial x} - kc \tag{1}$$

It was solved analytically with no reaction for verification with the numerical solution. The solutions agreed with each other to greater than 98 percent after the first few time steps.

Analytical Solution

For the analytical solution, boundary conditions were set at constant flux (Danckwerts B.C.) for the influent boundary and no flow at the exit boundary, with zero initial condition.

$$D\frac{\partial c}{\partial x} + Vc = \text{Constant Flux @ Influent}$$
 (2)

$$\frac{\partial c}{\partial x} = 0$$
 @ Exit (3)

The procedure was to change variables and reduce the dispersion equation to the heat equation, which could be solved by separation of variables.

Numerical Solution

The Crank-Nicolson algorithm was used for the numerical solution of the computer based model. A stability analysis showed ΔX of 0.077 meters and Δt of 0.25 hours to be the most stable. After the programmed solution was confirmed, coefficients of dispersion and velocity were determined.

Dispersion Coefficient

Dispersion coefficients were determined from tracer studies analyzed by the methods of Levenspeil [8] and Van der Laan [9], and were optimized along with velocity constants by the method of constrained pattern search [10]. Figure 3 gives a plot of dispersion coefficient versus retention time.

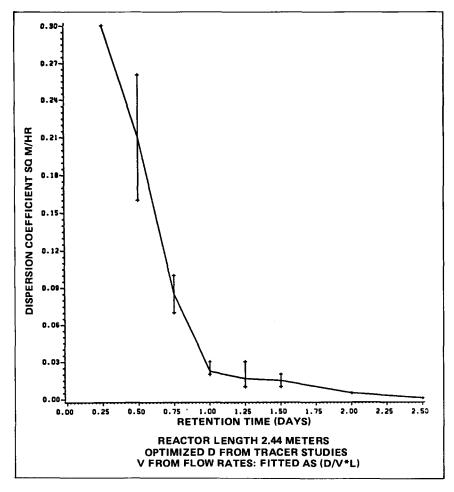


Figure 3. Dispersion coefficient standard curve in square meters/hour.

Velocity Coefficient

Figure 4 gives the flow rate curves for both reactors made shortly after the initial seeding process.

These curves represent flow through the reactors with no microbial films attached to the submerged media. Both lines are exponentially decreasing curves with increasing retention time, and do not reflect the effects of microbial film growth on flow rate over time at similar pumping rates. Although velocity coefficients were determined with dispersion coefficients through integration of

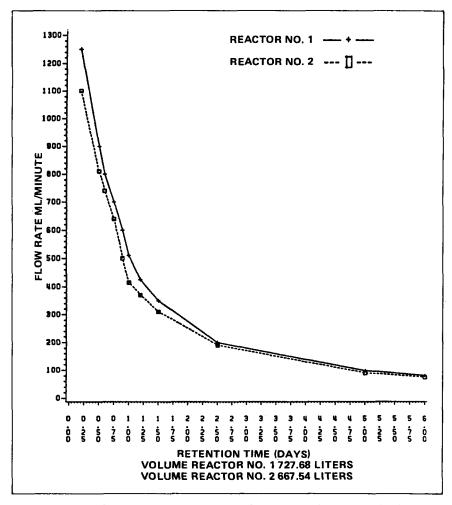


Figure 4. Pilot plant flow rate curves for Reactors No. 1 and No. 2.

the tracer curves, it was not possible to continuously calibrate pumps to maintain exact flow rates at similar pump settings.

A more reliable standard curve was used based on the relationship

$$[Theta] = [V/Q] = [[L*A]/Q] = [L/V]$$
(4)

Figure 5 is a plot of [V] versus [L/Theta] and was used to derive the velocity coefficients for the liquid phase model.

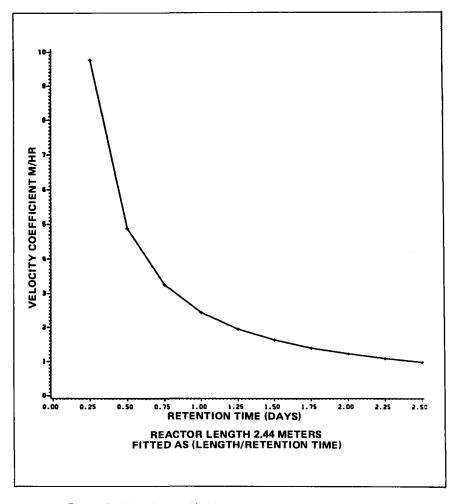


Figure 5. Velocity coefficient standard curve in meters/hour.

Optimization of Dispersion and Velocity Coefficients

Optimized dispersion and velocity coefficients were determined by using the influence coefficient method. The procedure used concentration data derived from tracer experiments along with a first approximation of each coefficient, and is defined mathematically when the *j*th row of the Jacobian matrix transpose is approximated by

$$\frac{\partial c_i}{\partial \alpha} = \frac{C_i(\alpha + \delta \alpha_j e_j) - C_i(\alpha)}{\delta \alpha}, i = 1, \dots m$$
(5)

where:

 e_j = the *j*th unit vector $\delta \alpha_j$ = small increment of α_j

Liquid Phase First Order Reaction Constant

The optimal first order reaction constant for the reduction of organic matter to carbon dioxide and methane was derived using experimental data with the equation for reactors in series.

Organic Matter
$$\rightarrow$$
 Volatile Acids \rightarrow CO₂ + CH₄ (6)

The equation was solved for up to five reactors, optimizing the reaction constant where the sum of squares error was minimized. Figure 6 gives the results of treatment efficiency using the experimental data as well as the predictive model with several of the reaction constants. The graph shows the optimal reaction constant to be 0.048/hour for one reactor and was used in the predictive model for all retention times. Equilibrium constants for the carbonate and bicarbonate reactions were taken from the literature [11]. Stoichiometric relationships of equations (7)-(11) were also included.

$$Organic Nigrogen \rightarrow NH_4^+ \rightarrow NH_3 + H^+$$
(7)

$$\mathrm{CO}_{2} + \mathrm{H}_{2}\mathrm{O} \rightarrow \mathrm{H}_{2}\mathrm{CO}_{3} \rightarrow \mathrm{HCO}_{3}^{-} + \mathrm{H}^{+} \rightarrow \mathrm{CO}_{3}^{-2}$$

$$\tag{8}$$

$$\mathrm{CO}_3^{-2} + \mathrm{Ca}^{+2} \to \mathrm{Ca}\mathrm{CO}_3 \tag{9}$$

$$SO_3^{-2}$$
 + Organic Matter $\rightarrow S^{-2}$ + H₂O + CO₂ (10)

$$S^{-2} + 2H^+ \rightarrow H_2 S \tag{11}$$

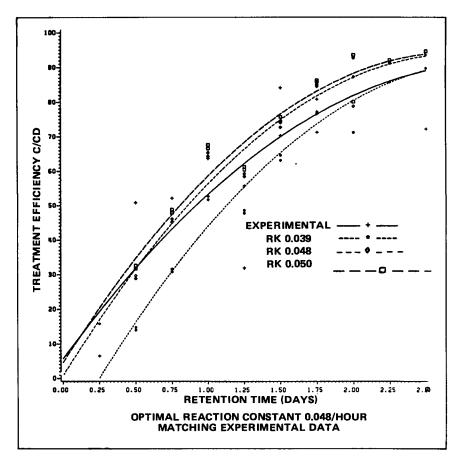


Figure 6. TOC efficiency versus Theta (experimental and modeled) reaction constants: 0.0390, 0.048 and 0.050/hour.

Gas Phase

Mass balances of CH_4 , CO_2 , and N_2 between the liquid and gas phases were based on the rates of biological and chemical production (equations (12), (13), and (14)). From the experimental data and the literature [12], it was determined that N_2 production was always present at saturation levels. Therefore, although the rates of production of CH_4 and CO_2 were a function of influent TOC concentrations, growth and yield rates, N_2 production was considered a constant 15.3 mg/1 (saturated).

$$[Y^*u] *X*VCH_4 = FL*HKCH_4*P_pCH_4*16000 + Fg*P_pCH_4/P_t*(16000/22.4)$$
(12)

$$[Y^*u] *X*VCO_2 = FL*HKCO_2P_pCO_2*44000 + Fg*P_pCO_2/P_t*(44000/22.4) + [TERM 1] + [TERM 2]$$
(13)

$$SATN_{2} = FL*HKN_{2}*P_{p}N_{2}*(0.79)*(1)*28000 + Fg*P_{p}N_{2}/P_{t}*(28000/22.4)$$
(14)

$$P_{t} = P_{p}CH_{4} + P_{p}CO_{2} + P_{p}N_{2} + P_{p}H_{2}O P_{p}CO_{2} +$$
(15)

where:

$$FL = flow of liquid (liters/time)$$

$$Fg = flow of gas (liters/time)$$

$$P_pCH_4 = partial pressure CH_4 (mmHg)$$

$$P_pCO_2 = partial pressure CO_2 (mmHg)$$

$$P_pH_2O = partial pressure N_2 (mmHg)$$

$$P_t = total pressure (mmHg)$$

$$HKCH_4 = Henrys constant CH_4 (moles/liter atm)$$

$$HKCO_2 = Henrys constant CO_2 (moles/liter atm)$$

$$HKN_2 = Henrys constant N_2 (moles/liter atm)$$

$$IVCH_4] = volume CH_4 (liters)$$

$$[VCO_2] = volume CO_2 (liters)$$

$$Y = percent yield$$

$$u = growth rate (1/days)$$

$$[X] = influent substrate concentration (mg/l)$$

$$TERM 1] = concentration of [HCO_3^{-2}] (mg/l)$$

Incorporating the partial pressure law and setting P_pN_2 equal to $P_t-(P_pCH_4 + P_pH_2O)$, mass balances were equated through the flow of gas term (Fg), then solved for P_pCO_2 .

Experimental Results

Experimental data and a statistical analysis for each reactor at all retention times are presented in Tables 1, 2, and 3.

The model used ionic equilibrium present in the liquid phase to predict effluent pH. TSS levels were not mathematically modeled because they were a function of the influent stream and would vary randomly and therefore, could not be fitted by a first order reaction constant. The low strength suspended solids were significantly reduced by passing through the porous media present in the upflow reactors. Any instance where the effluent TSS were higher than the influent TSS was caused by decayed material inside the reactor being washed out with the effluent and was not due to a failure of the filter. This could be avoided

				I able 1. Reactors No. 1 and 2: All Retention 1 lines	I ANU Z: AIL		S		
Variable	2	Mean	Standard Deviation	Minimum Value	Maximum Value	Standard Error of Mean	Sum	Variance	S S
					COLM = 1				
DATE	598	641.60033445	172.94770988	343.0000000	953.00000000	7.07235779	383677.00000	29910.910352	26.956
THETA	598	1.26170569	0.56197644	0.2500000	2,5000000	0.02298093	754.50000	0.315818	44.541
TOCI	111	67,43153153	52.07926473	5.00000000	200.00000000	4.94314505	7484.90000	2712.249815	77.233
TOCE	109	18.88348624	12.88241346	1.0000000	69,0000000	1.23391142	2058.30000	165.956577	68.221
TSSI	31	100.11935484	68.23938950	8.7000000	292.8000000	12.25615616	3103.70000	4656.614280	68.158
TSSE	30	26.70666667	40.64350424	1.8000000	152.30000000	7.42045470	801.20000	1651.894437	152.185
SULI	25	1.8960000	1.61180024	0.00000000	5.7000000	0.32236005	47,40000	2.597900	85.011
SULE	26	2.22692308	1.34983190	0.5000000	5.5000000	0.26472381	57.90000	1.822046	60.614
ALKI	24	102.46666667	23.12368759	53.0000000	137.8000000	4.72010296	2459.20000	534.704928	22.567
ALKE	24	150.17083333	30.61957997	98.1000000	206.7000000	6.25019559	3604,10000	937.558678	20.390
AMMI	27	6.43928571	3.68463670	1.2000000	12.5000000	0.69633088	180.30000	13.576548	57.221
AMME	28	12.51428571	6.49117431	2.9000000	29.0000000	1.22671664	350,40000	42.135344	51.870
GAS	108	0.27805556	0.25584552	0.00000000	1.00000000	0.02461875	30.03000	0.065457	92.012
N2 2	2	0.82571429	0.02760262	0.7900000	0.8700000	0.01043281	5.78000	0.000762	3.343
CH4	2	0.11571429	0.03408672	0.05000000	0.1500000	0.01288357	0.81000	0.001162	29.458
c02	7	0.01285714	0.00487950	0.0100000	0.0200000	0.00184428	00060.0	0.000024	37.952
ОТН	7	0.04714286	0.02563480	0.0100000	0.0800000	0.00968904	0.33000	0.000657	54.377
TDSI	თ	424.2222222	117.40291497	303.0000000	650.0000000	39.13430499	3818.00000	13783.44444	27.675
TDSE	თ	419.7777778	60.53878463	328.0000000	510.0000000	20.17959488	3778.00000	3664.94444	14.422
TEMP	28	81.34714286	6.69557226	64.00000000	89.0000000	1.26534422	2278.00000	44.830688	8.230

Table 1. Reactors No. 1 and 2: All Retention Times

213 \

14.941 29.331 77.033 94.893 76.511 76.511 76.511 76.511 76.513 49.068 49.068 47.303 54.363 98.619 98.619 47.303 33.072 33.072 33.072	27.675 14.676 8.230
12598.223655 0.080560 571.133389 283.433091 1952.630727 1926.490545 2.767826 2.711733 558.861660 1211.200830 13.003346 34.962308 0.079066 0.001195 0.0001095 0.000004	13783,444444 3867.944444 44.830688
290722.00000 374.50000 2047.40000 635.30000 635.30000 635.30000 45.20000 83.90000 83.90000 3372.910000 179.10000 337.50000 337.50000 5.91000 5.91000 0.53000 0.65000	3818.00000 3814.00000 2278.00000
5.70557179 0.01442796 2.94168934 2.9818320 13.32335714 0.34690094 0.34690094 0.32934683 4.92933394 7.25678342 0.69399131 1.13793685 0.03134760 0.01306707 0.00142857 0.00142857	39.13430499 20.73093353 1.26534422
954.0000000 958.000000 99.8000000 85.0000000 151.70000000 151.70000000 15.70000000 7.10000000 137.8000000 137.8000000 137.8000000 0.14000000 0.14000000 0.14000000 0.1000000	650.0000000 520.00000000 89.0000000
558.0000000 0.2500000 4.0000000 8.7000000 0.0000000 0.0000000 53.0000000 95.4000000 95.4000000 0.5000000 0.0000000 0.01000000 0.01000000 0.01000000	303.00000000 330.00000000 64.0000000
112.24180885 0.28383136 23.89839721 16.83547122 44.18858141 43.89180499 1.66367848 1.64673414 23.74025508 34.80231070 3.60608460 5.91289334 0.03457222 0.03457222 0.00377964	117.40291497 62.19280058 6.69557226
751.21963824 0.96770026 31.02121212 17.74153846 57.75454545 19.6536364 1.96521739 3.35600000 102.54347826 149.09130435 6.63333333 12.50000000 0.28512500 0.88512500 0.88428571 0.07571429 0.0710142857	424.2222222 423.7777778 81.35714286
387 387 387 387 387 387 387 387 387 387	9 28 9
DATE THETA TOC: TOC: TSS TSS SULE ALK! ALK! ALK! AMME GAS CO2 CO2	TDSI TDSE TEMP

COLM = 2

			Standard	Minimum	Maximum	Standard Error	ć		20
Variable	N	Mean	Deviation	Value	Value	of Mean	Sum	Variance	C. V.
				COLM = 1	= 1 THETA = 0.25	0.25			
DATE	30	920.63333333	9.05722548	906.00000000	939.0000000	1.65361557	27619.000000	82.0333333	0.984
TOCI	10	19.2500000	12.12721916	7.5000000	43.00000000	3.83496342	192.500000	147.0694444	62.999
TOCE	9	18.0000000	11.17536974	6.00000000	37.00000000	3.53396221	180.000000	124.8888889	62.085
TSSI	ო	26.46666667	5.84836159	21,1000000	32.70000000	3.37655314	79.400000	34.2033333	22.097
TSSE	ო	52.9333333	85.62250483	3.0000000	151.8000000	49,43417621	158.800000	7331.2133333	161.755
SULI	ς	0.60000000	0.55677644	0.00000000	1.10000000	0.32145503	1.800000	0.3100000	92.796
SULE	ო	4.03333333	0.80829038	3.10000000	4.5000000	0.46666667	12.100000	0.6533333	20.040
ALKI	0	116.6000000	7.49533188	111.3000000	121.9000000	5.30000000	233.200000	56.1800000	6.428
ALKE	2	166.9500000	3.74766594	164.30000000	169.6000000	2,6500000	333.900000	14.0450000	2.245
AMMI	ß	4.6000000	2.34520788	2.2000000	7,80000000	1.04880885	23.000000	5.5000000	50,983
AMME	വ	7.4800000	3.98710421	2.9000000	11.5000000	1.78308721	37.400000	15.8970000	53.304
GAS	ო	0.02000000	0.0000000.0	0.02000000	0.02000000	0.00000000.0	0.060000	000000000	0.000
N 2	0								
CH4	0								•
co_2	0								
ОТН	0								
TDSI	0		. •						•
TDSE	0								
TEMP	2	84.0000000	0.00000000	84.00000000	84.00000000	0.00000000.0	168.000000	0.0000000	0000

Table 2. Reactor No. 1: Individual Retention Times

4.446	71.678	71.625	109.443	86.094	30.395	44.390	14.788	25.711	87.616	66.961	77.367							5.170
1439,1954947	497,0994152	120.3391813	3935,4220000	39.0680000	0.1186667	2.1026667	288.3906667	1490.6426667	19,9666667	40,3447619	0.0466704							18,8571429
100683.00000	591.00000	291.00000	286.60000	36.30000	6.80000	19.60000	689.00000	901.00000	35.70000	66.40000	10.89000							672.00000
3.49235909	5.11499043	2.51667263	28.05502451	2.79528174	0.14063349	0.59198348	6.93290063	15.76199367	1.68889933	2.40073685	0.03459304							1.53529895
953.0000000	90.00000000	45.00000000	149.8000000	16.6000000	1.5000000	5.5000000	137.80000000	206.7000000	11.5000000	17.00000000	0.8400000							89.0000000
793.0000000	5.00000000	3.00000000	8.7000000	1.8000000	0.7000000	2.1000000	100.7000000	106.0000000	1.20000000	2.9000000	0.00000000							77.00000000
37.93673015	22.29572639	10.96992166	62.63294190	6.25043998	0.34448028	1.45005747	16.98206897	38.60884182	4.46840762	6.35175266	0.21603344						•	4.34248119
853.24576271	31.10526316	15.31578947	57.3200000	7.2600000	1.13333333	3.26666667	114.83333333	150.16666667	5.10000000	9.48571429	0.27923077					•	•	84,00000000
118	19	19	ß	ß	9	9	9	9	~	2	39	0	0	0	0	0	0	œ
DATE	TOCI	TOCE	TSSI	TSSE	SULI	SULE	ALKI	ALKE	AMMI	AMME	GAS	N ₂	CH ₄	ŝ	ОТН	TDSI	TDSE	TEMP

- O.5
Ħ
∢
Ē
=
F
۳
11
Σ
-
0
Ű

			Standard	Minimum	Maximum	Standard Error			
Variable	2	Mean	Deviation	Value	Value	of Mean	Sum	Variance	C, K
				COLM = 1	= 1 THETA = 1.75	1.75			
DATE	117	438.0000000	33.91902121	380.0000000	380.0000000 496.0000000	3.13581462	51246.000000	1150,500000	7.744
TOCI	38	116.05263158	37.57726985	33.0000000	196.00000000	6.09583812	4410.000000	1412.0512091	32.380
TOCE	38	22.31578947	14.33405558	5.0000000	69.0000000	2.32529087	848.00000	205.4651494	64.233
TSSI	13	148.33846154	64.69723769	69.0000000	292.8000000	17.94378522	1928.400000	4185.7325741	43.615
TSSE	12	42.50833333	45.54227723	9.9000000	152.3000000	13.14692301	510.100000	2074.0990152	107.137
SULI	0			•			-		
SULE	0								
ALKI	0								-
ALKE	0								•
AMMI	0								
AMME	0								
GAS	31	0.40903226	0.30227311	0.01000000	0.95000000	0.05428985	12.680000	0.0913690	73.900
N22	0								
CH₄	0								•
ço2	0							• .	
OTH	0						•		•
TDSI	0		,	.					
TDSE	0		•						
TEMP	0							•	•

Table 2. (Cont'd)

≂ 2.5
THETA
COLM

2.998 62.457	35,669	52.520	91.093	•						157,917							•
117.1666667 3632.6500000	92,7500000	2162.8230000	61.1336667	•		-				0.0699659	•						
13357.000000 1061.500000	243.000000	531.300000	51,500000							2.010000			-	-		•	
1.77951304 18.17253172	3.21022671	18.98606068	3.19201260				-			1.00000000 0.07635766							
43.0000000 379.0000000 1.77951304 30.0000000 200.0000000 18.17253172	50.0000000 3.21022671	29.8000000 157.0000000 18.98606068	24.00000000							1.00000000							
10.82435525 343.0000000 379.0000000 1.77951304 60.27146920 30.00000000 200.00000000 18.17253172	18.0000000	29,8000000	2.3000000							0.01000000					•		
10.82435525 60.27146920	9.63068014	46.50616088	7.81880212							0.26451070							
361.0000000 96.5000000	27.00000000	88.5500000	8.58333333							0.16750000							
37			9	0	0	0	0	0	0	12	0	0	0	0	0	0	0
DATE TOCI	TOCE	TSSI	TSSE	SULI	SULE	ALKI	ALKE	AMMI	AMME	GAS	2 ²	CH₄	c02	отн	TDSI	TDSE	TEMP

				19	able Z. (Cont d)	-			
Variable	z	Mean	Standard Deviation	Minimum Value	Maximum Value	Standard Error of M ea n	Sum	Variance	C, K,
				COLM = 1	= 1 THETA = 1.25	1.25			
DATE 2	213	603.0000000	61.63197222	497.00000000	709.0000000	4.22295315	128439.00000	3798,500000	10.221
TOCI	20	44.89500000	26.98247921	10.00000000	99.8000000	6.03346577	897.90000	728.054184	60.101
TOCE	20	19.86500000	12.46854041	2.30000000	40.30000000	2,78805039	397,30000	155.464500	62.766
TSSI	0						•		
TSSE	0								
SULI	ი	3.21111111	2.02758751	0.5000000	5.7000000	0.67586250	28.90000	4.11111	63.143
SULE	œ	1.75000000	0.58309519	0.5000000	2.1000000	0.20615528	14.00000	0.340000	33.320
ALKI	œ	96.72500000	26.57419532	53.00000000	132.5000000	9.39539686	773.80000	706.187857	27.474
ALKE	80	133.50000000	34.45539560	98.10000000	201.4000000	12.18182194	1068.00000	1187.174286	25.809
AMMI	ω	9.55000000	2.92379401	4.6000000	12.5000000	1.03371729	76.40000	8.548571	30.616
AMME	œ	17.22500000	6.62953349	10.4000000	29.00000000	2.34389404	137.80000	43.950714	38.488
GAS	11	0.23454545	0.21430649	0.0100000	0.60000000	0.06461584	2.58000	0.045927	91.371
N ₂	9	0.83166667	0.02483277	0.80000000	0.8700000	0.01013794	4.99000	0.000617	2.986
CH4	9	0.11500000	0.03728270	0.05000000	0.1500000	0.01522060	00069'0	0.001390	32.420
c02	ဖ	0.01333333	0.00516398	0.01000000	0.0200000	0.00210819	0.08000	0.000027	38.730
OTH	ø	0.04166667	0.02316607	0.01000000	0.07000000	0.00945751	0.25000	0.000537	55,599
TDSI	ი	424.2222222	117.40291497	303.00000000	650.00000000	39.13430499	3818.00000	13783.44444	27.675
TDSE	ი	419.777778	60.53878463	328.00000000	510.00000000	20.17959488	3778,00000	3664.94444	14.422
TEMP	18	79.8888889	7.55286380	64.00000000	88.0000000	1.78022707	1438.00000	57.045752	9.454

Table 2. (Cont'd)

3.210	82.161	73.414	42.627	44.312	45.901	66.097	24.667	9.733	48.729	33.633	81.712	•						
581,0000000	440.26923077	31,25641026	877,66666667	24.30250000	0.42142857	0.80277778	553.77438571	250,58857143	7.58000000	20.92285714	0.01519015	•					-	
62333.00000	332.000000	000000.66	278.000000	44.500000	000006.6	12.200000	763.200000	1301.200000	45.200000	108.800000	1.810000	0.790000	0.120000	0.010000	0.080000			
2.64575131	5.81952437	1.55059319	14.81271976	2.46487829	0.24536520	0.29865956	8.31996308	5.59674650	0.97339612	1.61720659	0.03557873							
792.00000000	80.0000000	23.0000000	109.0000000	17.00000000	2.30000000	3.30000000	127.2000000	180.2000000	10.5000000	20.00000000	0.42000000	0.79000000	0.12000000	0.01000000	0.0800000			
710.00000000	7.00000000	1.00000000	41.00000000	7.00000000	0.3000000	0.5000000	58.3000000	132.5000000	2.00000000	5.8000000	0.02000000	0.79000000	0.12000000	0.01000000	0.08000000			
24.10394159	20.98259352	5.59074327	29.62543952	4.92975659	0.64917530	0.89597867	23.53240926	15.82998962	2.75317998	4.57415098	0.12324833		•					
751.0000000	25,53846154	7.61538462	69.50000000	11.12500000	1.41428571	1.35555556	95,4000000	162.6500000	5.65000000	13.6000000	0.15083333	0.79000000	0.12000000	0.01000000	0.08000000			
83	13	13	4	4	7	0	8	œ	80	œ	12	F	-	-	-	0	0	0
DATE	TOCI	TOCE	TSSI	TSSE	SULI	SULE	ALKI	ALKE	AMMI	AMME	GAS	N 2	CH₄	c0,2	отн	TDSI	TDSE	TEMP

COLM = 1 THETA = 1.5

			Standard	Minimum	Mavimum	Standard Ermr			
Variable	2	Mean	Deviation	Value	Value	of Mean	Sum	Variance	C V.
				COLM = 2	= 2 THETA = 0.25	0.25			
DATE	25	918.0000000	7.35980072	00000000.906	930.00000000	1,47196014	22950,000000	54.166667	0.802
TOCI	7	23.28571429	12.36546651	8.00000000	43,0000000	4.67370703	163.000000	152.904762	53.103
TOCE	2	19.64285714	10.93432777	7.5000000	34,00000000	4,13278743	137.500000	119.559524	55.666
TSSI	2	23.3500000	3.18198052	21.10000000	25,6000000	2.2500000	46.700000	10.125000	13.627
TSSE	2	78.8000000	103.09616870	5.9000000	151.7000000	72.9000000	157.600000	10628.820000	130,833
SULI	-	0.90000000	0.28284271	0.70000000	1.10000000	0.20000000	1.800000	0.080000	31.427
SULE	2	4.8000000	0.98994949	4.10000000	5.5000000	0.70000000	9.600000	0.980000	20.624
ALKI	-	111.3000000		111.3000000	111.30000000		111.300000		•
ALKE	-	153.70000000		153.7000000	153.70000000		153.700000	•	
AMMI	0	6.9000000	1.27279221	6.00000000	7.8000000	0.90000000.0	13.800000	1.620000	18.446
AMME	2	10.4000000	2.26274170	8.8000000	12.00000000	1.60000000	20.800000	5.120000	21.757
GAS	-	0.03000000		0.03000000	0.03000000		0.030000		•
N ₂	0				•		-		
CH₄	0				•				
c0 ₂	0	•					•		
ОТН	0								•
TDSI	0	•	1		•				•
TDSE	0		•						
TEMP	-	84.00000000		84.0000000	84.0000000		84.000000		•

Table 3. Reactor No. 2: Individual Retention Times

4.999	85.354	79.588	94.789	50.591	61.097	63.931	13.182	20.710	79.498	62.050	93.565				•			4.836
1845,7384077	461.6588462	91.7984615	3467.1820000	10.2880000	0.3136667	6.9826667	243.4466667	1120.7910000	14.9002778	32.1952778	0.0754416							16.500000
109147,00000	654.50000	313.00000	310.60000	31.70000	5.50000	24.80000	710.20000	969.90000	43.70000	82.30000	13.21000							756.00000
3.81226616	4.21379988	1.87901838	26.33318059	1.43443369	0.22864334	1.07878533	6.36980725	13.66742478	1.28669593	1.89136276	0.04094485				•			1.35400640
954.00000000	90.0000000.06	44.00000000	149.80000000	10.70000000	1.5000000	7.10000000	137.8000000	206.70000000	11.5000000	18.0000000	1.09000000							89.0000000
793.00000000	4.00000000	3.00000000	58.88278186	1.8000000	0.00000000.0	1.3000000	100.7000000	127.2000000	1.20000000	3.3000000	0.02000000							77.00000000
42.96205777	21.48624784	9.58115137	62.12000000	3.20749123	0.56005952	2.64247359	15.60277753	33.47821680	3,86008779	5.67408828	0.27466637							4.06201920
859,42519685	25.17307692	12.03846154	62.12000000	6.3400000	0.91666667	4.13333333	118.36666667	161.6500000	4.85555556	9.1444444	0.29355556		•					84.0000000
127	26	26	ß	ß	9	Q	9	ø	ი	ი	45	0	0	0	0	0	0	თ
DATE	TOCI	TOCE	TSSI	TSSE	SULI	SULE	ALKI	ALKE	AMMI	AMME	GAS	N2	CH4	ço So	отн	TDSI	TDSE	TEMP

COLM = 2 THETA = 0.75

				Tat	Table 3. (Cont'd)				
Variable	z	Mean	Standard Deviation	Minimum Value	Maximum Value	Standard Error of Mean	Sum	Variance	, K C
				COLM = 2	1=2 THETA=	- 1			
DATE	83	751.0000000	24.10394159	710.0000000	792.00000000	2.64575131	62333.000000	581,0000000	3.210
TOCI	13	25.53846154	20.98259352	7.00000000	80.00000000	5.81952437	332.000000	440.26923077	82,161
TOCE	13	9.23076923	6.58475317	1.00000000	24.00000000	1.82628194	120.000000	43.35897436	71.335
TSSI	4	69.5000000	29.62543952	41.00000000	109.00000000	14.81271976	278.000000	877.66666667	42.627
TSSE	4	6.67500000	3.57339708	4.4000000	12.00000000	1.78669854	26.700000	12.76916667	53.534
SULI	2	1.41428571	0.64917530	0.30000000	2.3000000	0.24536520	000006.6	0.42142857	45.901
SULE	6	2.72222222	1.35441664	0.5000000	5.3000000	0.45147221	24.500000	1.8344444	49.754
ALKI	œ	95.4000000	23.53240926	58.3000000	127.2000000	8.31996308	763.200000	553.77428571	24.667
ALKE	œ	172.25000000	15.51681116	153.70000000	196.10000000	5.48602120	1378.000000	240.77142857	9.008
AMMI	œ	5.6500000	2.75317998	2.00000000	10.5000000	0.98339612	45.200000	7.58000000	48.729
AMME	œ	13.21250000	5.62175303	5.20000000	22.00000000	1.98758985	105.700000	31.60410714	42.549
GAS	34	0.28147059	0.29429044	0.00000000	1.4500000	0.05047039	9.570000	0.08660686	104.555
N2 2	-	0.7800000		0.78000000	0.78000000		0.780000		
CH ₄	ب	0.1400000		0.1400000	0.1400000		0.140000	•	
c02		0.01000000		0.01000000	0.01000000		0.010000		
отн	÷	0.07000000		0.07000000	0.07000000		0.070000		
TDSI	0								
TDSE	0								
TEMP	0								

-
_
_
0
~
()
_
-
•
\sim
· · ·
Ψ.
_
0
~
CO
1

6.949 60.101 75.379	55.988 19.782 27.474	23.746 30.616 33.878	2.536 50.324	34.993 38.333 27.675	14.676 9.454
1938.00000 728.054184 534.417836	3.840000 0.382143 706.187857	757.928393 8.548571 29.704107	0.000470 0.001070	0.000017 0.000720 13783.44444	3867.944444 57.045752
96292.000000 897.900000 582.700000	28.000000 25.000000 773.800000	927.500000 76.400000 128.700000	5.130000 0.390000	0.070000 0.420000 3818.000000	3814.000000 1438.000000
3.57071421 6.03346577 5.30351341	0.69282032 0.21855859 9.39539686	9.73350138 1.03371729 1.92691811		0.00166667 0.01095445 39.13430499	20.73093353 1.78022707
709.0000000 99.80000000 85.0000000	5.7000000 3.70000000 132.5000000	174.9000000 12.5000000 25.0000000	0.11000000	0.02000000 0.10000000 650.0000000 3	520.0000000 88.00000000
558.0000000 10.00000000 3.8000000	0.5000000 2.10000000 53.0000000	95.4000000 4.6000000 10.3000000	0.0100000		
44.02272141 26.98247921 23.11747902	1.95959179 0.61817704 26.57419532	27.53049932 2.92379401 5.45014744	0.02167948 0.03271085	0.00408248 0.02683282 117.40291497	62.19280058 7.55286380
633.5000000 44.89500000 30.66842105	3.5000000 3.12500000 96.72500000	115.93750000 9.55000000 16.08750000	0.85500000 0.06500000	0.01166667 0.07000000 424.2222222222	423.77777778 79.88888889
152 20 19 0	ထထထ	ω ω ω	ဝဖဖ	ບ່ບດ	6 8
DATE TOCI TOCE TSSI TSSE	SULI SULE ALKI	ALKE AMMI AMME	GAS N₂ CH₄	CO ₂ OTH TDSI	TEMP

COLM = 2 THETA = 1.25

with proper design of tubing or media traps. Alkalinity was modeled through ionic equilibrium and ammonia levels were related to influent TOC concentrations as previously stated.

Gas phase analysis was primarily concerned with the quantity of biogas production as well as the composition of the resulting gas phase. From Tables 1, 2, and 3, there were discrepancies between the composition of gas by-product derived experimentally and that which was predicted by the model. Although the flow of gas was relatively consistent, the decrease in methane and overabundance of nitrogen could be attributed to leaks either in the gas traps themselves or leaks occurring during the sampling process. As previously noted, some researchers have reported very high nitrogen levels with corresponding low levels of methane and not attributed this to leaks. It is a point which needs to be tested further in a more controlled environment.

Retention Times to Achieve Secondary Treatment

Figure 7 was derived from Figure 6 and shows the required retention times necessary for achieving secondary treatment standards at a variety of influent TOC concentrations.

The other requirements for secondary treatment standards, including pH monthly averages of 6.0-9.0 and TSS monthly averages of 30 mg/l, were inherently achieved when dealing with these low strength influents. The system was sensitive enough that it would fail if pH or TSS levels were significantly out of range and could not be brought back to secondary levels. This was also found to be true for fluctuations in temperature, for which this study averaged 81°F. During colder periods, gas production decreased to almost nothing while treatment efficiencies fell off accordingly.

DISCUSSION

The primary objectives of this research were to build and operate an anaerobic filter pilot plant using low strength influent, then develop, calibrate and verify a computer based model to evaluate the performance of the filter and to demonstrate the ability of the system to achieve secondary treatment standards.

The model was calibrated using experimental data. Table 4 demonstrates the calibration at 1.5 days retention time and 100 ppm influent TOC.

Results show that at approximately 140-150 time steps (0.25 hours each) secondary standards were achieved, matching the experimental results previously presented in Figure 7. Figure 8 summarizes the operational characteristics between the most important parameters modeled in this study, and was based on a similar diagram developed for anaerobic treatment using medium to high strength substrates [13].

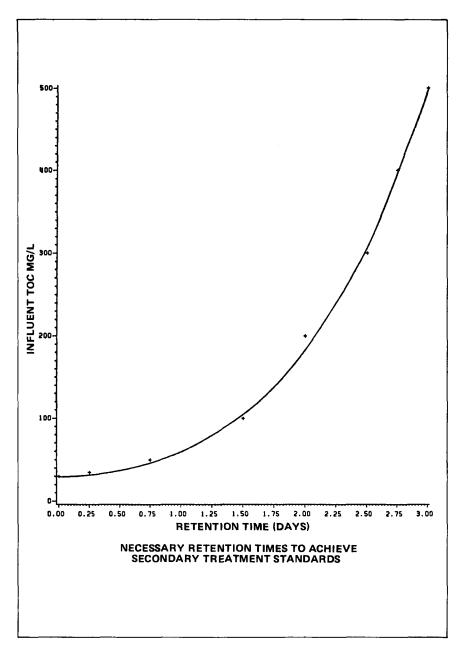
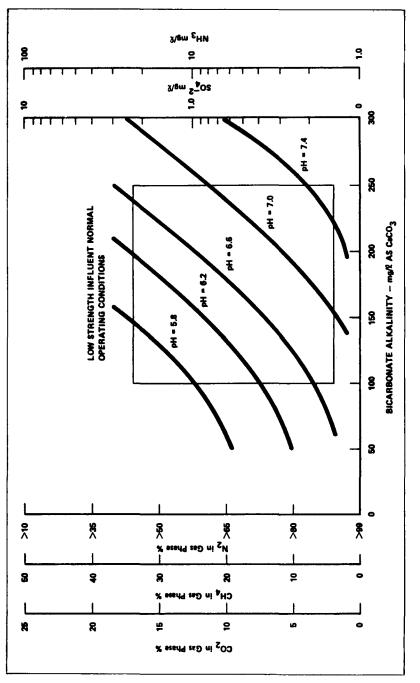



Figure 7. Secondary treatment with low strength influent. Influent Concentrations from 30-500 mg/I TOC.

Delta-t: 0.25 hours D: 0.012 sq meters/hour V: 1.90 meters/hour K: 0.0148/hour		Influent Concentrations: TOC: 100 ppm Ammonia: 4.65 ppm Alkalinity: 116.6 ppm Sulfides: 1.5 ppm		
#Dt's	Percent Treated	Sulfides	Alkalinity	Ammonia
0.00	0.45	0.00	0.00	0.00
10.00	14.82	3.09	233.32	5.45
20.00	26.35	4.33	233.31	6.07
30.00	35.59	5.33	233.31	6.56
40.00	43.00	6.12	233.31	6.96
50.00	48.95	6.76	233.31	7.28
•			•	
120.00	67.89	8.80	233.30	8.30
130.00	68.91	8.91	233.30	8.35
140.00	69.73	9.00	233.30	8.40
150.00	70.38	9.07	233.30	8.43
160.00	70.91	9.12	233.30	8.46
170.00	71.33	9.17	233.30	8.48

Table 4. Predictive Model Output Related to Influent Data

Although similar trends are apparent between operation at high and low strength substrates, differences do occur in the composition of the gas phase, where percent CH_4 was expected to be lower due to a lower concentration of influent TOC from which most CH_4 was derived. Consequently, the remaining components of the gas must make up for this reduced CH_4 , with a corresponding reduction in the percent CO_2 . N_2 , therefore, becomes the major gas component at reduced influent TOC levels, at retention times of less than two and a half days, coming from saturation levels present in the influent stream and any negligible amounts produced through biological production.

The range of pH was consistent with the range for anaerobic treatment of medium to high strength wastes, while the ammonia, alkalinity and sulfide concentrations in the effluent were decreased due to lower influent levels.

TOC treatment efficiency using low strength influent substrate was shown in Figure 6 for both the experimental data and the predicted model. The curves approximate each other to greater than 95 percent dependent on k, indicating an accurate determination of parameters and a correct solution of the dispersion equation.

Measurements of TOC were thought to be a better indicator of water quality with regards to secondary treatment standards for several reasons. First, the availability of the automatic TOC analyzer meant that more samples and standard curves could be measured to insure that all samples were read correctly. Also, samples could be read in hours instead of days. Second, unlike BOD or COD, TOC is independent of the individual oxidation states of each organic particulate present in wastewater. Furthermore, TOC does not measure other organically bound elements, such as nitrogen or hydrogen, which might incorrectly influence a BOD or COD analysis.

Total suspended solids data were derived from filterable residue and did not include non-filterable residue. The term *total suspended solids* (TSS) should, therefore, not be confused with *total residue*, which would have included both the filterable and non-filterable residue, and would have increased the reported concentrations. Secondary treatment standards are reported as TSS.

Sulfides were considered to be a combination of what is referred to as *total* sulfides. This includes the concentrations of $[H_2S]$ and $[HS^-]$, but does not include the remaining concentration of $[S^{-2}]$ which has been shown to be negligible [7].

Alkalinity data, which is the quantitative capacity of a wastewater to react with a strong acid $[H_2SO_4]$ to a designated pH, was within the limits of what should be expected for low strength domestic wastewaters. The measurement reflects the aggregate property of the wastewater, including primarily carbonate $[CO_3^{-2}]$, bicarbonate $[HCO_3^{-1}]$ and hydroxide $[OH^{-1}]$ ions, as well as possibly including any of the alkaline earth metals, such as phosphates, borates or silicates. Only carbonate, bicarbonate and hydroxide ions were included in this model to calculate pH, assuming most alkaline earth metals are converted to salts and will have little or no effect on alkalinity or the normal operation of the anaerobic filter.

Influent ammonia was considered to be derived from any organically bound nitrogen in the tri-negative oxidation state. Ammonia nitrogen $[NH_3-N]$ was produced by deamination of organic nitrogen containing compounds. In the case of domestic wastewaters, it is also produced by the hydrolysis of urea. It was assumed that both methods of producing ammonia were present in this anerobic filter pilot plant, and extreme care was taken to prevent loss of ammonia to the atmosphere during the time the samples were taken and the time they were analyzed.

The effects of temperature variation were not critical here due to the temperate climate of Los Angeles. Temperatures averaged in the low 80s, which meant that microbial growth rates were never seriously affected by severe changes in temperature. In addition, the columns received direct sunlight and acted as solar heaters during the day to keep the filters warm.

The most difficult problem encountered during the data collection was that domestic sewage tended to reflect the seasonal events of the university. During the holidays, the TOC concentration decreased significantly, while at the beginning of a new quarter the TOC concentration increased. Diurnal variation was also quite dramatic due to shock loading into the sewer system.

For these reasons, changes in retention time did not consistently reflect increases or decreases in treatment efficiencies, because effluent concentrations could decrease or increase dramatically at any moment. The problem also influenced the ability to derive accurate velocity constants from integration of tracer study data. This problem was overcome by using superficial velocities to plot a standard curve to derive V's for the computer model.

The ability of the anaerobic filter to achieve secondary treatment standards makes future applications very promising. Small filters could effectively treat local wastewaters which would otherwise flow away untreated. Larger systems could be used where operation and maintenance costs had to be conserved due to the relative simplicity of this system. In addition, the anaerobic filter is aesthetically acceptable to most urban, agricultural or residential areas. It does not cause the order problems of lagoons or other open-air treatment systems, and can be located in any area on a smaller tract of land. For all of these advantages, further applications of this system could be evaluated with the computer based predictive model and implemented where the model results were interpreted as favorable.

CONCLUSION

The results of this study demonstrate the anaerobic filter to be capable of achieving secondary treatment standards using low strength domestic wastewaters. Hydraulic retention times of 0.25 to 2.5 days resulted in less than 30 mg/l TOC as influent TOC concentrations varied from 30 to 500 mg/l, respectively. TSS levels at these TOC concentrations were also within the 30 mg/l standard when considering domestic wastewaters. Effluent pH values ranged between six and eight during normal operations.

Mathematical modeling of the system showed hydraulic retention times and reaction constants to be the most important parameters to estimate to accurately design a treatment plant for achieving secondary standards. Applying the dispersion equation to describe flow patterns showed dispersion and velocity constants to be less influential in determining concentrations at each time step.

The calibration process used experimental data for dispersion, velocity and reaction constants to model treatment at specific retention times. The example in Table 4 calibrated the system in one and a half days retention time, the time needed to treat a 100 ppm influent TOC substrate to the secondary standard of 30 ppm.

In conclusion, the complete predictive model will produce effluent characteristics of the liquid and gas phases knowing the primary constituents of the influent substrate, including TOC, pH, alkalinity, sulfides and ammonia. The flow may be modeled over a wide range of retention times and can demonstrate treatment levels, gas production and gas composition at any time during the treatment period.

The predictive model should be used where low strength domestic wastewaters are to be treated with the anaerobic filter. The analysis would begin with a determination of constants for dispersion, velocity and reaction for each reactor and substrate under consideration. Operation of the completed model would produce treatment patterns at all retention times and demonstrate the ability of the filter to successfully treat the influent substrate.

REFERENCES

- 1. J. B. Coulter, S. Soneda, and M. B. Ettiger, Preliminary Studies of Complete Anaerobic Sewage Treatment, *Journal of Sanitary Engineering Division*, (ASCE), 82, SA5, 1956.
- G. J. Schroepfer, W. J. Fullen, A. S. Johnson, N. R. Ziemke, and J. J. Anderson, The Anaerobic Contact Process as Applied to Packinghouse Wastes, presented at the 27th Annual Meeting, *Federation of Sewage and Industrial Waste Associations*, Cincinatti, Ohio, October 11-14, 1954.
- 3. J. C. Young and P. McCarty, The Anaerobic Filter for Waste Treatment, Stanford University Technical Reports, Report No. 87, Stanford, California, 1969.
- 4. W. A. Pretorius, Anaerobic Digestion of Raw Sewage, Water Research, 5, pp. 681-687, 1971.
- A. P. Y. Chung and M. K. Stenstrom, Anaerobic Filteration of Low Strength Wastewater, Water Resources Program, University of California at Los Angeles, SEAS-ENGR-82-27, Los Angeles, California, 1982.
- 6. H. A. Kobayashi, M. K. Stenstrom, and R. A. Mah, Treatment of Low Strength Domestic Wastewater Using the Anaerobic Filter, *Water Research*, 1981.
- 7. Standard Methods for the Examination of Water and Wastewater, 14th Edition, APHA-AWWA-WPCF, 1975.
- O. Levenspiel and W. K. Smith, Notes on the Diffusion-Type Model for the Longitudinal Mixing of Fluids in Flow, *Chemical Engineering Science*, 6, pp. 227-233, 1957.
- 9. E. T. van der Laan, Letters to the Editor, Journal of Chemical Engineering Science, 7:187, 1958.
- 10. L. Becker and W. W.-G. Yeh, Identification of Parameters in Unsteady Open Channel Flow, Water Resources Research, 8:4, pp. 956-965, 1972.
- 11. J. N. Butler, *Ionic Equilibria: A Mathematical Approach*, Addison-Wesley Publishing Company, Inc., 1964.

232 / SETH DAVID ABRAMSON

- 12. J. A. Oleszkiewicz, et al., Low Temperature Anaerobic Biofiltration in Upflow Reactors, Journal of Water Pollution Control Federation, 54:11, November 1982.
- 13. P. L. McCarthy, Anaerobic Waste Treatment Fundamentals: Part II, *Public Works*, pp. 123-126, October 1964.

Direct reprint requests to:

Seth David Abramson, Ph.D. 530½ N. San Vincente Blvd. Los Angeles, CA 90048