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Most addictive drugs affect behavior primarily through interactions 
with specific membrane receptors, which alter neuronal activity. The 
effects on neurons, combined with complex behavioral, contextual, 
and social interactions, induce long term changes in brain activity 
that underlie drug dependence (1–4). The precise molecular events 
that characterize these long term changes are the subject of intense 
investigations within the field of drug abuse research. An important 
focus of these efforts is the mesoaccumbens dopamine system.

Ventral Tegmental Area (VTA) dopamine neurons send projec-
tions to many brain areas, including the nucleus accumbens (NAcc), 
prefrontal cortex (PFC), and basolateral amygdala (BLA). Dopamine 
release from these neurons has been correlated with the reward-
ing effects of many addictive drugs, including nicotine and opiates. 
Within this system, nicotine activates nicotinic acetylcholine receptors 
(nAChRs), whereas opiate drugs primarily activate mu opioid receptors 
(MOR). These receptor classes are quite distinct in their structure and 
function, but the endpoint of activating each of these classes has strik-
ing similarities with regard to changes in neuronal excitability.

Nicotinic receptors are composed of five protein subunits that 
surround a central ion channel. There are twelve different subunit 
genes that are expressed in the vertebrate nervous system, and the 
different gene products can combine in a variety of ways to form 
functional receptors (5, 6). Within the dopamine system, mRNAs 
encoding α2−α7 and β2−β4 are expressed, leading to considerable 
diversity in nAChR subtypes (7, 8). Pharmacological approaches, 
sometimes in combination with genetic deletion of specific nAChR 
subunits in mice, have provided important insights into the sub-
units that contribute to VTA dopamine neuron excitability and 
reward-associated behavior (7–14). Unfortunately, these observations 
suggest that there is not a single subunit or subunit combination 
that underlies nicotine addiction, although we are getting closer to 
identifying the important subtypes. The extent to which these recep-
tors may be molecular targets for therapeutics is a subject of debate 
and intense investigation, with the two main hurdles being subtype 
identification and specificity for this pathway.

Results from cellular and synaptic assays of nAChR function 
within the VTA suggest that α7 homomeric receptors are expressed 
by dopamine neurons and on presynaptic glutamatergic inputs to 
these cells (11, 12). Thus, α7* nAChRs (where * indicates the possi-
ble contribution of other subunits to these receptors) are positioned 
to increase neuronal excitability pre- and post-synaptically. Indeed, 
activation of presynaptic α7 receptors with low, physiologically rel-
evant nicotine concentrations contributes to long-term potentiation 
(LTP) at the excitatory inputs to VTA dopamine neurons (15). Both 
dopamine and non-dopamine neurons within the VTA also express 

non-α7-containing nAChRs and the makeup of these receptors var-
ies with cell type. γ-Amino butyric acid (GABA)ergic interneurons 
likely express α4β2* receptors, although other subunits may con-
tribute to the α4β2* receptors and/or other pentameric combina-
tions within local inhibitory circuitry of the VTA (7, 8, 11–16). DA 
neurons also express α4β2 nAChRs with important contributions 
of α6, α5, and β3 (7, 8, 13, 14). The non-α7-containing nAChRs 
generally have a high affinity for nicotine and have been implicated 
in the direct excitation associated with arrival of the drug. With 
prolonged nicotine exposure, non-α7-containing nAChRs can be 
“upregulated,” which is a phenomenon associated with increased 
binding of radiolabeled ligands and stronger functional responses 
(17–20). The impact of nAChR upregulation on dopaminergic sig-
naling is an area of active ongoing investigations. 

The three major subtypes of opioid receptors––mu, delta, 
and kappa (MOR, DOR, and KOR, respectively)––were originally 
identified pharmacologically and more recently through molecular 
cloning (21). Drugs that activate MORs, DORs, or both, are gener-
ally reinforcing when tested in animals or human subjects, whereas 
the activation of KORs leads to aversive behavioral effects, which 
are described as anhedonic (21). These different behavioral effects 
are mediated, in part, by differential expression of these receptors 
on different neuronal types within the mesoaccumbens system (21). 
Using fluorescent labeling of VTA neurons that project to NAcc or 
to BLA, Ford et al. demonstrated that there is considerable diversity 
in the physiology of these cells, depending upon their postsynap-
tic targets. In that context, the authors found that MOR and DOR 
receptors caused a weak inhibition of VTA neurons that project to 
the BLA and had no effect on neurons projecting to NAcc (22). The 
KOR responses had the opposite pattern with strong inhibition of 
the NAcc-projecting neurons and a relatively smaller inhibition of 
the BLA projections (22). The diversity of the VTA dopamine neu-
rons also extended to the modulation of afferent inputs. Release 
of GABA within the VTA is acutely inhibited by opioids and is 
chronically altered during withdrawal from chronic opioid use (21). 
As with direct opioid inhibition, the VTA neurons with different 
projections showed differential modulation of GABAergic inputs in 
response to KOR and MOR/DOR activation. 

VTA dopamine neurons are known to release dopamine within 
the cell body region as well as from the axonal projections. The 
opioid effects outlined above impact dopamine release in both 
regions. Dopamine neurons express D2-type dopamine receptors 
that mediate feedback autoinhibition through inhibitory postsyn-
aptic currents (IPSCs) (23, 24). Activation of MORs or DORs had 
no effect on the D2-mediated IPSCs measured on dopamine cells 
in all areas. Consistent with the large inhibitory somatic responses 
outlined above, KOR activation caused stronger inhibition of the 
NAcc-projecting VTA dopamine neurons (22). This differential regu-
lation of specific pathways via opioid receptor activation highlights 
the fact that the dopamine neurons are a heterogeneous population, 
with target tissue–dependent expression of specific receptor classes. 
These differences certainly contribute to the behavioral effects of 
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opiate drugs and provide insight into potential therapeutic targets 
for treatment of drug addiction. 

At the sites of dopamine release in the NAcc, nicotinic and 
opioid receptor ligands exhibit profound effects. In addition to the 
potent effects of systemic injections of nicotine and MOR agonists 
on dopamine release, enhanced dopamine release can also be 
seen with administration of these compounds directly in the NAcc 
(25–28). Systemic administration modulates the dopamine neurons 
(directly) and their afferent inputs, causing the dopamine neurons to 
transition from tonic to burst firing patterns (11, 14–16, 21, 29–31). 

However, the mechanisms underlying the enhancement of DA 
release following injections of these drugs into the NAcc is less clear.

Activation of MORs and DORs expressed on cholinergic inter-
neurons within the NAcc, inhibits ACh release from these neurons, 
lowering extracellular ACh levels (32, 33). Thus, a straightforward 
hypothesis is that a reduction in AChR activity in the NAcc pro-
motes DA release (33–35). But a conflict exists between this hypoth-
esis and synaptosomal evidence demonstrating that activation of 
presynaptic nAChRs on DA terminals triggers transmitter release 
(36). Recent electrochemical measurements of evoked DA release 
in tissue slices provide some resolution, as they demonstrate that 
nAChR agonists or antagonists suppress DA release by either desen-
sitizing or by blocking the effects of endogenous ACh on the DA 
terminals (Figure 1). Interestingly, this suppression can be overcome 
by high frequency burst stimuli leading to even stronger DA release 
(37–39). These findings suggest that in concentrations relevant to 
cigarette smoking, nicotine only transiently activates nAChRs on 
DA terminals before strongly desensitizing them. This blockade of 
nAChR activity removes the influence of endogenous ACh, thus 
leading to a high, basal probability of release from DA terminals. 
This change simultaneously sensitizes DA terminals to burst firing 
patterns through a process that is not entirely clear. 

Thus, MOR and DOR agonist-induced enhancement of dopa-
mine release following focal NAcc administration is mediated by 
a modulation of local cholinergic tone. In contrast, KOR agonists 
administered into the NAcc only inhibit local dopamine release and 
this is likely mediated by KORs expressed directly on the dopamine 
terminals (40). The effects of the various opioid receptors on the fre-
quency-dependence of dopamine release remains to be tested. Clearly, 
the cellular distribution of these various receptor classes allows for 
differential modulation of DA release by nicotinic and opioid receptor 
systems and provides insight into the NAcc microcircuitry.

Several lines of evidence suggest profound interactions between 
the nicotinic and opioid receptor systems, particularly in the con-
text of nicotine addiction. Acute administration of nicotine in vivo 
increases the release of endogenous opioids (41, 42), and chronic 
nicotine treatment increases expression of MORs in striatum of 
female rats (43) and in VTA of mice (both sexes) (44). Numerous 
behavioral studies have implicated opioid receptors in the rewarding 
effects of nicotine and an increased MOR expression could be a con-
tributing factor. For example, the opioid receptor antagonist nalox-
one attenuates nicotine-induced increases in behavioral responses to 
food reward (45) as well as withdrawal symptoms in nicotine-depen-
dent animals (46). In human opiate drug users there is an exception-
ally high prevalence of smoking (47, 48). Also in human smokers, 
the likelihood that individuals will remain abstinent at the end of 
smoking cessation treatment has been linked to a single missense 
nucleotide polymorphism (SNP) in exon 1 [Asn40Asp (A118G)] of 
the mu opioid receptor gene, OPRM1 (49). Interestingly, the most 
profound association of the OPRM1 variant with the relative rein-
forcing value of nicotine was found in female test subjects (50), mir-
roring the preclinical studies in rats cited above (40). It is important 
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Figure 1. A diagram of the modification of dopamine release dynamics 
by nAChRs on dopamine terminals. A. The illustration indicates control 
conditions, where endogenous ACh release from cholinergic interneurons 
causes a high probability of dopamine release. Low frequency stimulation 
results in dopamine release that is very similar to that seen with high frequen-
cy burst-type stimulation. B. Nicotine treatment (upper panel) desensitizes the 
presynaptic nAChRs on the dopamine terminals, lowering release probability 
and decreasing the dopamine secretion elicited by low frequency stimulation. 
Under these conditions, high frequency burst firing (lower panel) causes more 
dopamine release than that seen under control conditions. Similar effects are 
seen with nAChR antagonists.
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to note that many rodent studies at the behavioral and cellular levels 
have not considered sex differences as a potential contributing factor 
to experimental outcomes. 

Using transgenic animals Blendy and colleagues have examined 
the relationship between nicotine’s behavioral effects and MOR 
expression (44). The nicotine-mediated activation of the transcrip-
tion factor cAMP-responsive element binding protein (CREB) is 
required for the rewarding effects of the drug, as assessed by a con-
ditioned-place preference behavioral screen. This behavioral assay 
tests not only the drug effects but also the influence of contextual 
cues, which are a critical element in the rewarding effects of most 
drugs of abuse, including nicotine (51). Pharmacological or genetic 
disruption of MOR function in these mice interfered with nicotine-
conditioned place preference, and the nicotine-induced changes in 
MOR expression were found to be CREB dependent. Together their 
findings suggest that CREB-dependent increased expression of func-
tional MORs is required for nicotine-conditioned reward. 

The persistent behavioral effects of nicotine arise from numer-
ous cellular and molecular alterations in the smoker’s brain. 
Pharmacological and molecular assays have identified nicotinic and 
opioid receptor classes expressed within the mesoaccumbens dopa-
mine system and these are clearly involved in the rewarding effects 
of nicotine and opiate drugs. We have only begun to explore the 
interactions between these receptor systems that may be critical for 
the development of addiction to nicotine and possibly other drugs 
of abuse. With luck, new treatment strategies may arise from these 
efforts to help treat those individual who are habitual users of nico-
tine and opiates.  doi:10.1124/mi.6.6.4
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