DEPARTMENTS

288 Reflections
A Brief History of ASPET on its Centennial Anniversary!
John Parascandola

303 NetResults
Sites of Interest on the World Wide Web

304 Significant Deciles
ASPET celebrates its centennial anniversary

335 Beyond the Bench
Holiday Book Round-up
John Lazo, Christie Carrico, John Nelson, and Samantha Nelson

338 Professional Opportunities
Position Openings

341 On Deck
Upcoming Meetings

344 Outliers

© cartoon

EDITOR
Harry B. Smith
ASSOCIATE EDITOR
John W. Nelson
DESIGN & LAYOUT
Vizuäl, Inc.

EDITORIAL ADVISORY BOARD
John S. Lazo, Chair, U Pittsburgh
Darrell R. Abernethy, NIH/NIA
Susan Amara, U Pittsburgh
Leslie Z. Benet, UCSF
Joan Heller Brown, UCSF
Bryan Cox, Abbott
Raymond Dingledine, Emory U
Sue Duckles, UC Irvine
Alfred G. Gilman, U Texas SW
Randy Hall, Emory U
Ken Harden, U North Carolina
John Hickman, Servier
Dayle Houston*, U North Carolina
Robert S. Kass, Columbia U
Serrine S. Lau, U Arizona
Rochelle Long, NIGMS/NIH
Richard R. Neubig, U Michigan
Stefan Offermanns, U Heidelberg
Carlo Patrano, U Rome
David Roman**, U Michigan
Alan Sartoirelli, Yale U
Boris Tabakoff, U Colorado
Palmer Taylor, U San Diego
Robert Tomko*, U Pittsburgh
Ted Torphy, Johnson&Johnson
Roger Tuan, UCSF
Michael R. Vasko, U Indiana
Mary Vore, U Kentucky
Richard M. Weinshilboum, Mayo
* Student representative; ** Postdoctoral representative

BOARD OF PUBLICATIONS TRUSTEES
Brian M. Cox
Darrell R. Abernethy
P. Jeffrey Conn
Lorraine Gudas
Eric F. Johnson
John S. Lazo
Edward T. Morgan
Richard R. Neubig
Rick G. Schnellmann
Darryle D. Schoepp
Mary Vore

EXECUTIVE OFFICER
Christine K. Carrico

JOURNALS DIRECTOR
Richard Dodenhoff

Molecular Interventions (ISSN 1534-0384) is published by the American Society for Pharmacology and Experimental Therapeutics, 9650 Rockville Pike, Bethesda, MD 20814-3995. Published bimonthly in February, April, June, August, October, and December. Annual subscription rates: U.S.: $240 for institutions; and $78 for individuals. Outside the U.S.: $261 for institutions and $99 for individuals. The subscription price to ASPET members ($30) is included in membership dues. Single issue: $44. Subscriptions include access to the online version of MI at molinterv.org (ISSN 1543-2548). Indexed or abstracted by Biochemistry & Biophysics Citation Index, EMBASE/Excerpta Medica, Index to Scientific Reviews, ISI Alerting Services, ISI Web of Science, PubMed/Medline, and Science Citation Index-Expanded.

Advertising (FASEB AdNet): 301-634-7103; adnet@faseb.org.
Editorial: 301-634-7790; mi@aspet.org.
Subscriptions: 301-634-7099; staff@dues.faseb.org. ASPET: 301-634-7099, info@aspet.org.

Statements and opinions contained in the articles of Molecular Interventions are solely those of the individual authors and contributors and not of the American Society for Pharmacology and Experimental Therapeutics. The appearance of advertisements in Molecular Interventions is not a warranty, endorsement, or approval of the products or their safety. The American Society for Pharmacology and Experimental Therapeutics disclaims responsibility for any injury to persons or property resulting from any ideas or products referred to in the articles or advertisements. Molecular Interventions is copyrighted by the American Society for Pharmacology and Experimental Therapeutics. Photocopying of articles beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law is allowed, provided that the $20.00 per-copy fee is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. Classroom photocopying is permitted at no fee, provided that students are not charged more than the cost of duplication. This consent does not extend to other kinds of copying. Reproduction of any portion of an article for subsequent republication requires permission of the copyright owner. Write to ASPET Copyright Dept., 9650 Rockville Pike, Bethesda, MD 20814-3995.

Postmaster: Send address changes to Molecular Interventions, ASPET, 9650 Rockville Pike, Bethesda, MD 20814-3995.
Of Bacterial Bondage: Bacterial Transporter Structure Can Help Define How Ions and Drugs Modulate Neurotransmitter Transporters

The neurotransmitter transporters belonging to the solute carrier 6 (SLC6) family, including the γ-aminobutyric acid (GAT), norepinephrine (NET), serotonin (SERT) and dopamine (DAT) transporters are extremely important drug targets of great clinical relevance. These Na⁺, Cl⁻-dependent transporters primarily function following neurotransmission to reset neuronal signaling by transporting neurotransmitter out of the synapse and back into the pre-synaptic neuron. Recent studies have tracked down an elusive binding site for Cl⁻ that facilitates neurotransmitter transport using structural differences evident with bacterial family members (e.g., the *Aquifex aeolicus* leucine transporter LeuTAa) that lack Cl⁻ dependence. Additionally, the crystal structures of antidepressant-bound LeuTAa reveals a surprising mode of drug interaction that may have relevance for medication development. The study of sequence and structural divergence between LeuTAa and human SLC6 family transporters can thus inform us as to how and why neurotransmitter transporters evolved a reliance on extracellular Cl⁻ to propel the transport cycle; what residue changes and helical rearrangements give rise to recognition of different substrates; and how drugs such as antidepressants, cocaine, and amphetamines halt (or reverse) the transport process.

L. Keith Henry, Jens Meiler, and Randy D. Blakely

Improving Local Anesthetics: Blocking Pain, Permitting Normal Sensation

Drug interactions and drug specificity are core themes for the pharmacologist. The paper discussed in this Viewpoint exploits the former to attain the latter. How can one improve local anesthetics so that they block pain but permit normal sensation? QX-314 is a charged derivative of lidocaine without anesthetic activity because it cannot diffuse across the cell membrane to access the neuronal voltage-dependent sodium channel. Capsaicin is a selective activator of the TRPV1 channel, the localization of which is restricted to sensory C-fiber neurons involved in nociception. Because the large pore size of the activated TRPV1 allows passage of large cations such as QX-314, combined treatment with capsaicin and QX-314 puts QX-314 uniquely into that subclass of neurons mediating pain, thereby achieving sensational specificity.

Peter M. Blumberg
REVIEWS

313 Protein Maturation in the ER: When to hold ‘em, when to fold ‘em

The specific posttranslational modification of protein cysteine residues by the addition of the tripeptide glutathione is termed S-glutathionylation. This process is promoted by oxidative and nitrosative stress but also occurs in unstressed cells. Altered levels of S-glutathionylation in some proteins have been associated with numerous pathologies, many of which have been linked to redox stress in the endoplasmic reticulum (ER). Proper protein folding is dependent upon controlled redox conditions within the ER, and it seems that ER conditions can in turn affect rates of S-glutathionylation. This article seeks to bring together the ways through which these processes are interrelated and considers the implications of these interrelationships upon therapeutic approaches to disease.

Danyelle M. Townsend

325 Phase 0 Clinical Trials: Accelerating the Evaluation of Therapeutics

The Food and Drug Administration (FDA) recently introduced the Exploratory Investigational New Drug Guidance to expedite the clinical evaluation of new therapeutic and imaging agents. Early clinical studies performed under the auspices of this guidance, so-called “Phase 0” trials, have been initiated at the National Cancer Institute to integrate qualified pharmacodynamic biomarker assays into first-in-human cancer clinical trials. The goal of this integration is to establish proof of concept at the earliest stage of drug development. Phase 0 trials do not offer any possibility of patient benefit; instead, intensive, real-time pharmacodynamic and pharmacokinetic analyses of tumor samples and/or surrogate tissues inform subsequent trials. Phase 0 studies do not replace formal Phase I drug safety testing and require a substantial investment of resources; however, they promise more rational selection of agents for further, large-scale development as well as the identification of potential therapeutic failures early in the development process.

Robert Kinders, Ralph E. Parchment, Jay Ji, Shivaani Kummar, Anthony J. Murgo, Martin Gutierrez, Jerry Collins, Larry Rubinstein, Oxana Pickeral, Seth M. Steinberg, Sherry Yang, Melinda Hollingshead, Alice Chen, Lee Helman, Robert Wiltrout, Mel Simpson, Joseph E. Tomaszewski, and James H. Doroshow

Cell responses to stress: A view from the ER.
Photo Credit: Francis Leroy, Biocosmos / Photo Researchers, Inc.