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1. INTRODUCTION
1.1. FLOW INDUCED PULSATIONS
Low frequency acoustic pulsations in
pipe networks have been observed in
many technical applications [1–11].
These pulsations are undesirable not
only because of the noise produced but
also because of the possibility of
mechanical failures in the pipe network.
The high amplitude of the acoustic
pressure fluctuations results in
mechanical stresses that can cause
fatigue failure. Lower pulsation levels
can already affect volume flow
measurements [12] or trigger vibration
control equipment. Even when the
vibration and pressure pulsation levels
do not endanger the system safety and
can be tolerated, they still cause
additional pressure losses and reduce
the efficiency. However small these
losses might seem in percentage terms,
they constitute, in absolute values, a
significant amount of wasted energy.

Forced pulsations, like the
pulsations driven by compressors, can
be predicted in the design phase by
numerical models. A different kind of
acoustic pulsations is the aeroacoustic
oscillation caused by the instability of
the flow in the pipe systems. This kind
of pulsations is called self-sustained, or
self-excited oscillations.

The flow in a pipe past the opening
of a closed branch forms a shear layer,
which is one of the main sound sources
driving aeroacoustic oscillations in pipe
networks. Self-sustained aeroacoustic
oscillations of unstable shear layers are
due to a feedback mechanism between
the hydrodynamic (vortical) flow field,
associated with the unstable shear layer,
and the acoustic (potential) flow field.
Thus, the essential constituents of this
feedback excitation mechanism are the
shear layer oscillations and the resonant
acoustic mode. In this case, the resonant
acoustic mode provides the upstream
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feedback event which strongly enhances
the system oscillations.

1.2. TRAPPED ACOUSTIC MODES
Acoustic resonance of a pipe system
occurs when acoustic energy
accumulates into a standing wave which
is called an acoustic mode of the system.
The resonance modes are defined as the
eigen-modes of the system [13]. Each
mode is described by a complex
resonance frequency and a mode shape,
corresponding to the eigen-value and
the eigen-vector, respectively. The real
part of each complex frequency
corresponds to the frequency of free
oscillation of the system at resonance
conditions, while the imaginary part is a
measure of the quality factor of the
resonance [14].

The resonance behavior of a pipe
system depends on the geometry of the
system and on the boundary conditions
at its terminations. Resonance modes
involving the whole system can be
defined as global modes [15, 16] of the
system and their response depends
strongly on the boundary conditions.
By contrast, resonance modes involving
only a sub-set of the pipe system are
referred to as trapped (or localized)
modes [15, 16] and are not sensitive to
the boundary conditions. 

The trapped modes are resonance
modes exhibiting zero radiation losses.
These modes rarely exist in pipe
networks, but more commonly
encountered are the nearly trapped
modes, for which the radiation losses
are small. Trapped and nearly trapped
acoustic modes are particularly
problematic in industrial applications
because they are very liable to flow
excitation and can produce excessively
high levels of pressure pulsations. Thus,
the excitation of these modes often
causes severe vibration and noise
problems, some of which are briefly
discussed in the following section. We
will see that closed branches can induce

trapped and nearly trapped modes (Sec.
7).

1.3. EXAMPLES OF FIELD
EXPERIENCE
From 1940 to 1960, Oklahoma Gas and
Electric Company had problems with
the safety valves installed on its boilers.
Unusual noise and vibration, coming
from these valves were observed by
operators. The problem arose with all
the re-heater safety valves located on a
horizontal portion of the re-heat steam
inlet line just before it enters the steam
generator, and just downstream of a pipe
elbow. The vibration was so severe that
within a few months several valves
failed. These problems promoted a
systematic investigation of the flow
induced vibrations in safety valves [2].
This investigation identified the
standpipes of the valves, which form a
row of closed side branches along a
main pipe, as responsible for the
occurrence of pulsations.

High amplitude pulsations, one
order of magnitude higher than
maximum pulsation levels
corresponding to safety norms, were
observed in 1973 in a compressor
station (Fig. 1-a) of the Dutch gas
transport system (Ommen, The
Netherlands). The ratio of the
amplitude of the acoustic velocity to
main flow velocity reached 0.4. The
pressure pulsation amplitude reached
1.5bar for a static pressure of 60bar and
for pipe diameters of 42". These
pulsations were identified as
aeroacoustic oscillations sustained by
the instability of the grazing flow along
closed side branches of the pipe system
[4]. As the pulsations occurred only
above a critical flow velocity, the
problem was solved by reducing the
local velocity of the flow by means of a
by-pass piping. 

Peters and Riezebos [6] reported
two other similar problems which
occurred at a regulating station and at a
measurement and control station of the
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Dutch gas transport system. In the first
case, the pulsations occurred in a
section of the pipe network presenting
two closed pressure-relieve lines (2" in
diameter) along a main pipe (4" in
diameter). The source of pulsations was
identified to be the instability of the
main flow (in the 4" pipe) grazing along
the 2" vent lines. The amplitude of the
pulsations, measured at the end of the
relieve lines was 1.2bar with a static
pressure of 60bar. In the case of the
measurement and control station, the
installation where flow induced
pulsations were observed consists of two
headers (28" in diameter) and three
control sections (8" in diameter). These
pulsations were not due to the
instability of a grazing flow, but to the
instability of the flow entering the 28"
low-pressure header, leaving one of the
8" control sections. 

Gorter [17] also observed strong
pulsations on a long (few meters) side
branch of 0.5" diameter along a 12" main
pipe. This side branch was used as
connection to a manometer, monitoring
the static pressure. Pulsations were
detected as a result of the associated
thermal heating on the wall of the side
branch. The paint at the end of the
closed side branch would burn off. 

In 2002, the steam dryer (Fig. 1-b)
in the boiling water reactor (BWR) of
Quad Cities Unit 2 (QC2) experienced
high cycle fatigue cracks after the
reactor’s maximum power was increased
by approximately 17%. Repairing the

dryer by using thicker plates and
stronger welds did not resolve the
problem, as the dryer exhibited new
cracks upon continued operation [18].
The cracks appeared on the dryer outer
plates, which face the inlet nozzles of
the main steam lines (MSLs). The
steam dryer was therefore replaced with
a substantially more robust one which
was also instrumented with pressure
transducers to provide direct
measurements of the pressure
fluctuations at numerous locations.
During this course of events, the safety
relief valves (SRVs) on the MSLs were
experiencing high vibration levels, and
subsequent inspection for maintenance
during a refueling outage showed that
some safety valves had been damaged.
The pressure measurements on the
steam dryer indicated that increasing
the steam velocity in the MSLs, related
to the increase in the reactor power,
excited the acoustic modes in the
standpipes of the safety valves, which
are mounted on the MSLs. The
resonance was so strong that it not only
damaged some of the valves, but also
propagated upstream in the MSLs and
into the reactor dome and damaged the
steam dryer. The problem was solved by
changing the standpipe geometry to
avoid the acoustic resonance at the
increased rated power [8, 9, 11].

Turbine by-pass steam piping is
another example of side branches which
is often encountered in power plants.
When the by-pass valve is closed, which

Steam dryer

(b)(a)

Main steam
nozzles

Main steam
lines

Safety relief
valves

Figure 1: Ommen compressor station (a) and main steam piping layout of the
boiling water reactor (BWR) of Quad Cities Unit 2 (b) [9].



is the normal operation mode, the by-
pass steam line forms two closed side
branches; one branch upstream of the
valve connected to the fresh steam pipe
and a downstream branch connected to
the cold re-heat pipe. Generally, there
are multiple by-pass valves for each
turbine and consequently multiple side
branches in close proximity to each
other often exist in power plants. Such
pipe arrangements can display trapped
or nearly trapped acoustic modes which,
as mentioned earlier, are very liable to
flow excitation [19]. Serious vibration
problems in power plants caused by
acoustic resonance in multiple closed
side branches were reported by Chen
and Stürchler [1] and Gillessen and
Roller [20].

1.4. OVERVIEW OF THE PAPER
The present review paper is divided into
fourteen sections. In the present section
we have introduced the concepts of flow
induced pulsations and trapped acoustic
modes, and presented some field
experiences where these phenomena
have been observed. In the following
four sections we present the
fundamental aspects of the flow induced
pulsations in pipe systems with closed
branches, these are: the theory of sound
produced by vortical disturbances due
to shear layer instability (Sec. 2), the
description of the hydrodynamic and
acoustic conditions for the occurrence
of self-sustained oscillations (Sec. 3), the
characteristics of the self-sustained
oscillations due to the instability of a
shear layer (Sec. 4) and the linear
stability theory of the shear layer (Sec.
5). Then, in Sec. 6 we present a simple
“frequency domain” model to predict
the self-sustained oscillations by means
of the energy balance technique. In Sec.
7, we describe the prediction of the
acoustic behavior of pipe networks and
introduce some examples of acoustic
resonators displaying self-sustained
oscillations. The identification and the
modeling of the sound sources in pipe

systems with closed branches are
discussed in Sec. 8 and Sec. 9
respectively. Finally, the last five
sections present: a qualitative
description of the hydrodynamic
interaction (Sec. 10), the role of wall
vibrations (Sec. 11), some remedial
measures for the prevention of self-
sustained oscillations (Sec. 12), the
design of scale models (Sec. 13) and an
overview of some open questions (Sec.
14). 

2. VORTEX SOUND
The instability of separated flows such
as shear layers, wakes and free jets acts
as a source of unsteadiness for flows at
high Reynolds numbers. An unsteady
flow induces an unsteady force on the
walls, associated to vortex shedding.
The reaction force of the walls to this
hydrodynamic force is a source of sound
[21]. The vorticity in a flow field is
therefore related to the sound produced
[22, 23]. 

One can qualitatively understand
this feature by considering the familiar
case of the singing wire: the tone
generated by a cylinder of diameter Dcyl

in a steady cross flow of velocity U.
When we assume a potential flow
around the cylinder, there is no net
force applied by the flow on the cylinder
because of the symmetry of the flow
field. However, due to viscous effects,
vorticity shedding in the cylinder wake
breaks the symmetry of the flow field.
Above a critical Reynolds number ReDcyl

> 50 based on the diameter 
of the cylinder, instability of the wake is
observed which results in the formation
of periodic vortex shedding at a
frequency fvk ≈ 0.2U/Dcyl. This so called
von Karman vortex street [24–26] is
associated to an oscillating lift force
applied by the fluid on the cylinder [27].
The reaction force of the cylinder to this
lift force is the source of tone
generation, which was studied first by
Strouhal [28].
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It is essential to realize that the
cylinder walls do not need to vibrate in
order to generate the sound. However, if
a mechanical vibration of the cylinder is
induced by the oscillating lift force, this
can significantly enhance the spatial
coherence of the vortex shedding along
the cylinder and result into a stronger
tone. This is likely to occur when the
cylinder mechanical resonance
frequency is close to the natural Strouhal
vortex frequency fvkDcyl /U ≈ 0.2.

A similar lock-in can occur with an
acoustic standing wave (resonant mode)
when the cylinder is confined in a duct
or in a cavity [29–31]. This enhances
even more the sound radiation, because
the acoustic standing wave provides
improved radiation impedance to the
sound source. The resulting high
amplitude acoustic oscillation controls
the vortex shedding. This is an example
of a self-sustained oscillation. The
global behavior of these kind of
oscillations can be described in terms of
a feedback loop (Fig. 2-a) consisting of
an amplifier (flow instability) coupled
to a narrow band filter (acoustic
resonance). Reviews of self-sustained
oscillations involving a coupling
between flow instability and a resonant
acoustic field are provided by Rockwell
[32], Rockwell and Naudascher [33, 34],
Blake [27], Blake and Powell [35],
Powell [36], Howe [37–39] and Gloerfelt
[40]. These reviews also consider

hydrodynamic instabilities in which
acoustic resonance is absent, such as
edge tones or shallow cavities
oscillations. We restrict ourselves to
resonant cavities for which the coupling
with an acoustic mode is essential.
Please note that we selected the example
of the cylinder because it is clear that in
this case there is no impingement of the
separated flow on a sharp edge. Actually,
the concept of sound produced by
impingement of a separated flow (such
as a shear layer) used in early literature
is rather misleading. In contrast to the
vortex sound theory described below, it
is a verbal conjecture without
quantitative predictive value. 

A formal relationship between
vortex shedding and sound generation
has been first established for free field
conditions by Powell [22] and
generalized by Howe [23, 41, 42]. Howe
[41] proposes to use a Helmholtz
decomposition of the flow field to
define the acoustic field:

(1)

where ϕ0 is a steady scalar potential, ϕ′
is the unsteady scalar potential and is
the stream function. The acoustic field

is defined by Howe [41] as the
unsteady irrotational part of the velocity
field:

(2)r′ = ∇ ′u
def

ϕ

r′u

r
ψ

r r
u = ∇ + ′( ) + ∇ ×ϕ ϕ ψ0

r
u

U

U

Dsb

Lsb

Dsb

DpAcoustic particle
velocity excites

shear layer

(a)

(b)

Acoustic
standing wave

Acoustic pressure
amplitude distribution

Shear layer vortical
disturbances

Figure 2: Feedback loop characterizing the self-sustained oscillations (a) and
double side branch system in cross configuration (b).



The ambiguity in the Helmholtz
decomposition is in practice removed
by the boundary conditions which we
impose to the acoustic field. 

We consider flows with a high
Reynolds number and a low Mach
number so that we can neglect friction
and heat transfer. Assuming a
homoentropic flow (uniform entropy),
we can use the formulation of Crocco for
the momentum equation:

(3)

where is the

total enthalpy and is the
vorticity. 

At low Mach numbers, we can
neglect the convective effects on the
propagation of sound waves. With this
assumption one finds the wave
equation: 

(4)

where c0 is the speed of sound. 
The last equation shows that the

Coriolis force density
, where ρ0 is the fluid

density, acts as source of sound. 
As proposed by Howe [41], the

time-averaged acoustic source power
<Psource> can be estimated using the
low Mach number 
approximation:

(5)

where V is the volume in which is not
vanishing and the brackets 〈…〉 indicate
time averaging. The fact that we
integrate over space and average over
one oscillation period makes this
formulation quite robust. Furthermore,
it is quite successful because it stresses
the dipole character of the sound source,
which is dominant in the cases
considered [43].

The power transfer from the
hydrodynamic field to the acoustic field
is due to the pressure difference across
the source region which is in phase with
the acoustic velocity The pressure
difference in phase with the acoustic
acceleration will act as an added
mass to the acoustic resonator. This
corresponds to the so called “end
correction” to the length of the pipe
segments, used to predict acoustic
resonances of pipe systems by means of
a plane wave model [44] (Sec. 7.2).

3. ACOUSTIC AND
HYDRODYNAMIC MODES
The flow induced pulsations of double
closed side branch systems in cross
configuration (Fig. 2-b) have been
extensively studied [19, 45–55]. We
consider two closed side branches of
equal length Lsb and diameter Dsb

connected to a cross-junction with the
main pipe of diameter Dp. We use this
relatively simple configuration in order
to introduce the basic concepts of
acoustic and hydrodynamic modes. 

The amplitude of the acoustic
pressure |p'max| measured [48] at the
closed end of the side branches and the
corresponding whistling frequency f are
presented as function of the main flow
velocity U in Fig. 3-a. The different
resonant acoustic modes, corresponding
to acoustic standing waves with
frequencies ,
n = 1, 2, 3, ..., are clearly observed in
Fig. 3-a. Only the odd acoustic modes,
consisting of odd multiples of a quarter
wavelength in each branch, are resonant
because they have a pressure node at the
junction.

The resonance modes display an
anti-symmetric spatial distribution of
the acoustic pressure amplitude at the
junction which does not generate plane
waves in the main pipe. For frequencies
below the cut-off frequency fcut for
propagation of non-planar modes in the
main pipe, the odd acoustic modes do

f n c Ln sb≈ −( ) ( )2 1 40

du dt
r′

r′u .

r
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not radiate into the main pipe.

Therefore, these modes are trapped

modes, exhibiting negligible radiation

losses. In addition, the maximum

acoustic velocity of these modes occurs

at the branch opening, where the shear

layer vortices are formed. Since these

vortices are also convected with the flow

in a direction which is normal to the

acoustic velocity oscillation, the

acoustic power production, according to

Eq. (5), is at its maximum. These unique

features of negligible radiation losses

and efficient sound power production

make the well-tuned double closed side

branch systems in cross configuration

very liable to strong flow excited

acoustic resonances.

As can be seen from Fig. 3-a, the
flow induced pulsations occur in certain
intervals of the Strouhal number

based on the effective
cavity width Weff . Within each of these
intervals, the Strouhal number at which
the acoustic pressure |p'max| displays a
maximum is referred to as the optimal
Strouhal number Srweff ,opt. While the
optimal Strouhal number is useful to
indicate the conditions of maximum
pulsation amplitude, in engineering
practice one often uses the critical
Strouhal number Srwef,cri, that indicates
the conditions for the onset of the
pulsations, i.e. the highest velocity
before the onset of pulsations. 

The relevant length scale in
problems concerning the aeroacoustic

Sr f W UWeff eff=

Figure 3: Acoustic measurements [48] (a) and flow visualizations [45] (b) in a
double side branch system in cross configuration with sharp edges.
The acoustic measurements have been carried out in a system with
circular cross section of the pipes and with side branch diameter Dsb =
2.5cm, main pipe diameter Dp = 3cm and side branch length Lsb =
20cm. The flow visualizations have been carried out in a system with
square cross section of the pipes and with side branch width equal to
the main pipe width Wsb = Wp = 6cm and side branch length Lsb =
56.4cm. The third hydrodynamic mode, observed in the flow
visualizations, corresponds to very low pulsation amplitudes so that it
has not been reported in the acoustic measurements.
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behavior of pipe systems with closed
side branches has been identified by
Bruggeman et al. [56] to be the effective
cavity width Weff of the side branch at
the junction. For a side branch with
rectangular cross section Weff ≈ Wsb +
rup, where Wsb is the width of the side
branch and rup the radius of curvature of
the upstream edge of the junction (Fig.
14). For side branches with circular
cross section of diameter Dsb, the
effective width is Weff ≈ πDsb /
4 + reff , where πDsb/4 is the average
width of the side branch cross section.
This is the width (dimension along the
flow direction) of a rectangular opening
with the same surface area and the same
depth (dimension normal to the flow
direction) as the circular opening.
Experiments by Bruggeman et al. [56]
indicate that for circular cross sections,
reff is the minimum radius of curvature
rup of the upstream edge of the junction
(Fig. 14). 

As can be seen in Fig. 3-a,
pulsations occur at a certain acoustic
mode n within several, but limited
ranges of flow velocity, which
correspond to the so called
hydrodynamic modes of the shear layer
and are referred to in the figure by the
integers m = 1, 2, .... The order of the
hydrodynamic mode m indicates the
number of vortices formed by the shear
layer between the upstream and
downstream edges of the side branch
opening. 

The first hydrodynamic mode m=1,
corresponding to one vortex in the side
branch opening (Fig. 3-b), appears
usually at an optimal Strouhal number
Srweff,opt ≈ 0.4. The convective velocity of
the vortex is about Ucon ≈ 0.4U [56],
hence the travel time of the vortex
across the opening is one oscillation
period T = 1/f. Please note that at high
amplitude oscillations, such as shown in
Fig. 3-a, one observes a decrease of
Srweff,opt down to 0.3 [45, 47, 48, 50]. This
is due to a decrease of the convective
speed as the vortex enters deep into the
side branch.

For the second hydrodynamic
mode m = 2, two vortices are present at
the same time in the opening of the side
branch (Fig. 3-b), and the time needed
by a vortex to travel across the junction
is then two oscillation periods, which
corresponds to Srweff,opt ≈ 0.8. 

A third hydrodynamic mode m = 3
has been observed by Peters [45] (Fig. 3-
b), but it corresponds to very low
pulsation amplitudes. It has therefore
not been reported by Kriesels et al. [48]. 

For similar cavity flows, other
researchers [32, 33, 40] observed
experimentally up to the fifth
hydrodynamic mode of the shear layer.
Modes higher than the fifth might not
appear due to merging of successive
vortices in the shear layer, as observed
in free shear layers [32, 40, 57].

From Fig. 3-a, it appears that the
sound source is most effective when it is
operating at the first hydrodynamic
mode m = 1. Indeed, most of the severe
pulsations observed in field experiences
correspond to m = 1. When the flow
velocity is increased gradually, the
higher order hydrodynamic modes m >
1 are observed before observing the first
hydrodynamic mode m = 1. Fig. 3-a
clearly depicts this feature: each specific
acoustic mode (n = 1, 2, 3,...) is first
excited by the second hydrodynamic
mode m = 2 and then by the first
hydrodynamic mode m = 1. 

In principle, each hydrodynamic
mode m could couple with each acoustic
mode of the system n. The amplitude of
the pulsations increases with the
acoustic mode number n simply
because, at a fixed Strouhal number
Srweff = fWeff /U (fixed hydrodynamic
mode m), a higher frequency implies a
higher flow velocity. Hence more flow
power is available to
drive the pulsations [58]. 

In order to compare the amplitudes
of the pulsations, they should be
presented in a dimensionless form. It
appears that the physically most
relevant dimensionless form is to
compare the acoustic velocity amplitude

1 2 40
3 2ρ πU Dsb( )
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at the sound source with the
steady main flow velocity U. In the
particular case of a resonant closed
branch, this corresponds to the ratio
|p'max| /(ρ0c0U ) of the pressure
amplitude |p'max| at a pressure antinode
in the closed branch (i.e. at the closed
branch termination) divided by the
product ρ0c0U of the characteristic
impedance r0c0 of the fluid with the
main flow velocity U. When presented
in this form, the dimensionless
amplitude of the pulsations for the first
hydrodynamic mode of Fig. 3-a appear
to be of order unity, while the pulsation
amplitude for the second hydrodynamic
mode appears to be an order of
magnitude lower. 

Based on this dimensionless form,
Bruggeman et al. [56] introduced the
concept of low, moderate and high
amplitude pulsations, which we will
discuss in Sec. 8.3. 

Using the stagnation pressure
ρ0U 2/2 as characteristic pressure is
useful for moderate amplitudes (Sec.
13.2). At high amplitudes scaling with
ρ0c0U appears to be better (Sec. 13.1).

4. SELF-SUSTAINED
OSCILLATIONS 
Self-sustained oscillations of unstable
shear layers can be described by means
of a lumped element model as the
instability of a feedback loop (Fig. 2-a)
involving the unstable hydrodynamic
(vortical) flow field and the acoustic
(potential) flow field [59–63]. 

Since self-sustained oscillations
involve often only one dominant mode,
these kind of oscillations can be
described considering a single mode
model of the acoustic behavior of the
pipe system. Drawing a parallel between
the oscillations of mass-spring systems
and the aeroacoustic pulsations in pipe
systems, each acoustic mode of the 
pipe system will be described by
discussing the oscillations of an
independent mass-spring system [64].

The vortex shedding at
discontinuities in a pipe system
corresponds to an external force .
This force is triggered by the acoustic
velocity and it maintains the
oscillations. In a mass-spring system
this force is considered proportional to
the velocity of the mass (corresponding
to the acoustic velocity), so that it can
maintain self-sustained oscillations. 

The amplitude and phase responses
of a forced mass-spring system are
represented in Fig. 4 in terms of the
velocity of the mass . The
amplitude of this response has a
maximum at a frequency f close to the
natural frequency of the free oscillation
regime fn. This maximum corresponds
to the resonance condition of the forced
oscillation regime. The quality factor Q
is defined as the ratio of the
resonance frequency and the width of
the resonance peak 3dB below the peak
amplitude. The phase ϕac between the
excitation force and the velocity of
the mass changes from ϕac = -π /2
at low  frequencies, where the response
of the mass is quasi-static, towards ϕac =
π /2 at high frequencies, where the mass
movement is opposite in sign to the
excitation. When there is no damping,
the phase transition is abrupt and
occurs at f = fn. As the damping
increases (the quality factor Q
decreases) the transition becomes more
gradual. This phase transition around
the resonance frequency is essential to
understand the behavior of self-
sustained oscillations.

For periodic oscillations the total
time delay along the feedback loop
should be an integer number of the
oscillation period. From this oscillation
condition we can determine the
whistling frequency f of the self-
sustained oscillations:

(6)

where the first term of the left side is the
phase delay due to convection and ϕac is

2
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the phase between the excitation force
due to vortex shedding (which can be
expressed as a source pressure related to
the sound source) and the acoustic
velocity at the source position. 

The convective velocity Ucon

depends on the amplitude of the
oscillation. For high amplitudes the
vortex path enters deep into the closed
branch, resulting into a decrease of the
convective velocity. This decrease
results into a lowering of the Strouhal
number for maximum pulsation level
(optimal Strouhal number) [45, 47, 48,
50]. As explained in Sec. 2, the flow also
involves an acoustical inertia. This
inertia corresponds to the added mass
term experienced by an oscillating
object placed in a flow [65]. In our case
the added mass term is taken into
account by the end corrections to the
length of the pipe segments (Sec. 7.2).
We neglect the amplitude dependence of
these end corrections. This implies that
the observed oscillation frequency at
maximum pulsation level will differ
slightly from the passive resonance
frequency in the absence of main flow.

The optimal oscillation condition
corresponds to acoustic resonance f ≈ fn

and implies ϕac ≈ 0. When the flow

velocity U is changed the phase delay
due to convection is modified because
the convective velocity Ucon ∝ U
changes. Furthermore the oscillation
condition (Eq. (6)) is not satisfied
anymore at the resonance frequency fn .
By adjusting the oscillation frequency f ,
the system can reach any phase in the
range -π /2 < ϕac < π /2 which leads to
the matching of the oscillation
condition (Eq. (6)), allowing whistling
within a finite velocity range (Fig. 3-a)
for a given hydrodynamic and acoustic
mode. By shifting away from the
resonance, the amplitude of the
response of the system is reduced. The
oscillation frequency f increases
gradually with increasing flow velocity.
For velocities below the value for
optimal oscillation condition, the
oscillation amplitude increases with
increasing the flow velocity. When the
optimal flow velocity is reached a
further increase implies a decrease of
the response of the acoustic mode and,
as a consequence, a reduction of the
pulsation amplitude. When losses
become too large, the oscillation stops
or an oscillation involving other
hydrodynamic or acoustic modes
becomes dominant (Fig. 3-a). 
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When the resonator has a high
quality factor Q, the frequency change
due to change in flow velocity U
remains very small for a given acoustic
mode. We therefore observe a typical
stepwise increase in frequency f (Fig. 3-
a) rather than a gradual increase of
frequency f with increasing flow
velocity U.

As will be explained in Sec. 5 a
stable limit cycle of the oscillation of a
feedback system cannot be achieved
when all the elements of the loop
display a linear behavior. A non-linear
saturation mechanism is essential to
obtain a stable periodic oscillation at
finite amplitude [60].

The changes in hydrodynamic and
acoustic modes can display hysteresis
[47, 56]. This implies that the
oscillations modes will appear,
respectively disappear, at different flow
velocities U. This is common for non-
linear systems.

5. THE SHEAR LAYER
INSTABILITY AND SATURATION
The shear layer instability is the source
of unsteadiness that acts as the amplifier
in the feedback loop generating self-
sustained oscillations (Fig. 2-a). The
growth of vortical disturbances in the
shear layer separating the main pipe
flow from the stagnant fluid in the
closed side branch has been extensively
studied by means of the linearized
stability theory since Rayleigh [66]. 

The effect of finite momentum
thickness of the velocity profile of the
mean flow on the spatial amplification
and convective velocity (phase speed) of
hydrodynamic waves in an inviscid
parallel free shear layer has been
predicted by Michalke [67]. The nature
of the coupling between the shear layer
and the acoustic field at the flow
separation point at x = 0, where the
shear layer is formed, is not addressed in
the analysis of Michalke [67]. For a
given initial harmonic perturbation of

the vorticity field at position x = 0, the
theory predicts an exponential spatial
growth . The predicted influence of
the mean flow velocity profile on the
spatial growth of unstable waves has
been confirmed by experiments [68].
The predicted spatial amplification
exponent -αiθs [67] is shown in Fig. 5 as
a function of the Strouhal number Srθ =
f θs/U based on the shear layer
momentum thickness θs.

For low frequencies or thin shear
layer compared to the hydrodynamic
wavelength, the theory predicts an
integral amplification over one
wavelength by a factor e2π. This low
frequency limit is indicated by the
dotted line in Fig. 5. Furthermore, the
theory predicts that for frequencies
above:

(7)

the perturbations are not amplified.
Therefore, hydrodynamic waves with
wavelength λh = 0.4U/ f shorter than
about ten times the shear layer
momentum thickness θs are not
amplified by the shear layer and cannot
be self-sustained. This implies that
when the main flow velocity is increased
monotonically, the highest
hydrodynamic mode to appear is
determined by the critical ratio lh/θs of
hydrodynamic wavelength λh to
momentum thickness θs, as discussed
above. The Strouhal number above
which -αiθs < 0 has been confirmed
experimentally [68].

The exponential growth of vorticity
perturbations with increasing distance
from the flow separation point is only
observed as long as the shear layer
perturbations are very small. For large
perturbations, the shear layer is
observed to roll-up into coherent vortex
structures as can be seen from the flow
visualizations in Fig. 3-b. 

The concentration of the shear
layer vorticity into discrete vortices,
clearly observed in Fig. 3-b, is the non-

f

U
sθ

= 0 04.

e ix−α



linear saturation mechanism which
explains the stabilization of the
feedback loop oscillation at finite
pulsation amplitude [56, 60, 69]. As the
perturbation amplitude becomes very
large, , another non-
linearity appears, which is caused by the
acoustically induced flow separation at
the downstream edge and the amplitude
dependence of the rate of vortex
shedding at the upstream edge. This
effect is referred to as “vortex damping”
and has been predicted by Howe [39]
and by Disselhorst and van
Wijngaarden [70]. Furthermore, it has
been experimentally demonstrated by
Graf and Ziada [71, 72] and Ziada [47].
At yet higher amplitudes, non-linear
wave steepening, which generates
radiation losses, can become significant
[45, 48, 50, 73, 74]. This wave
steepening leads eventually to the
formation of acoustic shock waves [45,
50, 73, 74]. 

6. ENERGY BALANCE
In general, prediction of the self-
sustained oscillations can be achieved
by means of the classical “time-domain”

approach in which the equations of
motion are integrated numerically.
However, if the oscillations are
harmonic, we can use a “frequency-
domain” approach, in which we
consider the steady oscillations in the
frequency domain. In the following we
describe two “frequency-domain”
methods, the single mode model of
Bruggeman et al. [56] and the less
formal energy balance approach. 

A formal procedure to determine
the self-sustained oscillation behavior of
a pipe system with closed branches has
been obtained by Bruggeman et al. [56,
75]. This consists of a single mode
model for the low frequency sound
production by vortical non-
homogeneities in a pipe system with low
Mach number flow. The propagation of
low frequency sound in a two-
dimensional duct system was studied by
means of the method of matched
asymptotic expansions [75]. An integral
formulation of the problem of sound
produced by aeroacoustic sources in T-
junctions was derived using the formula
of Green. The Green’s function was
determined as proposed by Howe [23,
76] by coupling a locally incompressible
potential flow model at the junctions to

r
u U Ojun' ( )= 1
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Figure 5: Amplification rate -αiθs for a shear layer with finite thickness as
function of the Strouhal number based on the shear layer momentum
thickness Srθ [67].
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a plane wave model (Sec. 7.2) in the pipe
segments. The Green’s function was
expanded in terms of modes of the pipe
system. The resulting expansion was
solved with the method of vander Pol
and the source terms were modeled
analytically. This results into a set of
coupled second order differential
equations, one for each mode. This
approach has been inspired by the
approach proposed by Fletcher [60] for
wind instruments. Assuming that a
single mode is dominant yields a single
second order equation as used by
Bruggeman et al. [56, 75] and by
Dequand et al. [50].

A less formal method for the
prediction of the self-sustained
oscillations is the energy balance
approach. This method assumes that at
fixed flow conditions only a single
acoustic mode of the pipe network is
dominating and that each resonance has
a high quality factor so that the
oscillation frequency f corresponds, in
first approximation, to that of an
acoustic mode fn of the system. The
evaluation of the mode amplitude, that
is the amplitude of the steady harmonic
oscillation, is carried out through a
balance between the time-averaged
acoustic source power <Psource> and the
time-averaged acoustic power losses
<Ploss>, in order to satisfy the acoustic
energy balance of the whole system. The
acoustic source power <Psource> is
modeled by using the formulation of
Howe (Eq. (5)). Acoustic losses <Ploss>
are due to different contributions, the
most important are: radiation of
acoustic waves <Prad>, visco-thermal
dissipation by friction and heat transfer
<Pv-th>, non-linear radiation losses due
to wave steepening <Prad-nl>, energy
transfer to wall vibrations <Pwall> and
sound absorption by vortex shedding
<Pvort> at pipe discontinuities. In
principle, the last effect is included in
the theory of vortex sound (Eq. (5)).
However, in some cases, simplified
(quasi-steady) theories can be used,

which do not involve details of the flow
[77–80]. 

7. GLOBAL ACOUSTIC BEHAVIOR
OF A PIPE SYSTEM
7.1. CLOSED BRANCHES AS
ACOUSTIC DELIMITERS
We consider self-sustained acoustic
pulsations in pipe systems involving a
resonant acoustic field. This resonant
field can be described in first
approximation as a standing wave of the
system. This standing wave is localized
in space by acoustic delimiters. 

Acoustic delimiters in a pipe system
are discontinuities in the system
inducing strong reflections. These can
be for example a sudden area expansion,
an open pipe termination, an orifice or a
chocked valve. The aeroacoustic
response of such acoustic delimiters has
been extensively discussed in literature
[77–90]. 

An interesting type of acoustic
delimiter is the closed branch. This is
composed by a pipe segment connected
on one side to a junction (usually a T-
junction or a cross-junction) and closed
at the other side. 

The closed branch of length Lcb acts
as “perfect” reflector at frequencies fn ≈
(2n - 1) c0/[4(Lcb + δcb)], n = 1, 2, 3, .…
The so called end correction δcb takes
into account the inertia of the acoustic
flow at the junction. In absence of mean
flow this end correction has been
evaluated by Benade [91], Keefe [92, 93],
Nederveen [94], Bruggeman [75] and
Dubos et al. [95]. For these critical
frequencies fn below the cut-off
frequency for non-planar waves fn < fcut,
the standing wave patterns display a
pressure node at the junction.

7.2. LOW FREQUENCY MODELING
For a global prediction of the standing
wave pattern of a complex pipe system
with closed branches, we assume that
the relevant oscillations have
frequencies below the cut-off frequency



fcut for non-planar wave propagation, so
that only plane waves propagate in the
various pipe segments composing the
system. Within pipes with circular cross
section, the first evanescent pipe mode
decays in space, for low Helmholtz
numbers HeD = 2π fD/c0 << 1 based on
the pipe diameter D, as

. Hence, the plane
wave assumption is quite accurate
within one diameter from the junction. 

When calculating the standing
wave behavior of a pipe system
(resonance modes), we neglect the
sound sources in the system. Then, for
low Helmholtz numbers HeD << 1, at
each junction in the pipe system the
difference in fluctuations of the total
enthalpy B ' between points in different
sections of the junction, at about one
pipe diameter from the junction, is
negligible. This result is derived by
using the linearized form of the
Bernoulli equation (integral of
momentum equation along a streamline
assuming a potential acoustic flow):

(8)

where 1, 2, … N are the indices of the
different pipe segments meeting at the
junction (Fig. 14), p' and u' are the
acoustic pressure and the acoustic
velocity of the plane waves, U is the
main flow velocity and ρ0 is the fluid
density. 

The set of equations is then
complemented by the linearized
integral mass conservation law:

(9)

where the index j refers to the different
pipe segments meeting at the junction,
n̂ is the unit vector of the different
sections of the junction (directed
outwards the junction), S is the cross
sectional area of each pipe meeting at
the junction and c0 is the speed sound. 

To obtain more explicit results we
assume harmonic waves so that the
d’Alembert solution for plane waves in
pipe segments can be introduced in the
form: 

(10)

where ω = 2π f is the angular frequency,
p± is the complex amplitude of the wave
traveling in the positive/negative
direction and k± = ω /(c0 ± U) is the
wave number.

In these equations, we assume the
origin of the coordinates of each pipe
segment to be at the junction which we
consider. The positive direction is
chosen outwards from the junction. The
set of equations is mathematically
closed by imposing the acoustic
boundary conditions at the boundaries
of the pipe system. 

The visco-thermal losses can be
taken into account in the model by
incorporating them in the wave number
k±, in absence of main flow as discussed
by Kirchhoff [96], Rayleigh [66],
Tijdeman [97], Kergomard et al. [98, 99]
and Pierce [44] and in presence of main
flow as proposed by Ronneberger and
Ahrens [100], Peters et al. [84] and
Allam and Åbom [101]. The radiation
losses can be included in the boundary
conditions by imposing a radiation
impedance. Other acoustic losses, as the
wall vibrations, the non-linear losses
due to wave steepening and the vortex
shedding at pipe discontinuities are
difficult to model analytically.

Using linear models for the acoustic
boundary conditions at the boundaries
of the pipe system, one obtains a
homogeneous set of linear equations.
Non-trivial solutions of this system of
equations correspond to eigen-values fn

for which the determinant of the
homogeneous set of equations vanishes. 

As mentioned in Sec. 6, we adopt a
single mode approach for the
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description of the aeroacoustic behavior
of a pipe system. Furthermore, we
assume that the oscillation frequency of
each mode is well approximated by the
real part Re( fn) of the corresponding
eigen-value fn. Justification for this
assumption is that we are mostly
interested in oscillations with a high
quality factor Q, so that Re( fn)/Im( fn)
>> 1. We will further use the spatial
distribution of each mode, the eigen-
vector, to calculate the acoustic power
generated by the sources <Psource > and
the acoustic power losses < Ploss >. This
provides an energy balance, which
allows the prediction of the amplitude
of a stable limit cycle oscillation (Sec. 6). 

7.3. SINGLE CLOSED BRANCH
RESONATOR
7.3.1. Single deep side branch
Considering a single closed side branch
of diameter Dsb along an infinite main
pipe of diameter Dp, at low frequencies,
the pressure reflection coefficient Rp for
plane waves traveling in the side branch
towards the junction psb

- is:

(11)

where p±
sb

is the complex amplitude of
the reflected/incoming wave (Eq. (10))
and we assumed anechoic pipe
terminations of the main pipe.

In the limit of small side branch
diameter compared to the main pipe
diameter Dsb << Dp , the pressure
reflection coefficient (Eq. (11)) is close
to that of an ideal open end Rp ≈ -1, so
that the closed side branch can be
considered as an isolated resonator. At
the frequencies corresponding to the
resonances of the closed side branch 
fn ≈ (2n - 1)c0/(4Lsb), n = 1, 2, 3, …, the
system can be excited, displaying self-
sustained oscillations. 

Deep and narrow closed side
branches are widely used for pressure
measurements along gas transport
systems. Gasunie has experienced

strong flow induced pulsations in these
kinds of configurations (Sec. 1.3). 

In studies on the aeroacoustic
behavior of single deep side branch
resonators [8, 9, 55, 102, 103],
measurements are often carried out on a
deep side branch (Lsb/Dsb > 1) placed in
the test section (Dp/Dsb > 1) of a closed
loop wind tunnel. When Lsb/Dp < 1, the
system is acoustically similar to a cavity
radiating sound into a free space [61]. In
that case, the radiation impedance Z of
this side branch can be approximated by
the radiation impedance of a flanged
open pipe termination:

(12)

The pressure reflection coefficient
Rp for plane waves traveling in the side
branch towards the junction p-

sb
is then:

(13)

In the single deep side branch
resonators, near the transverse acoustic
resonances of the system composed by
the closed branch and the main pipe fn ≈
1/2 nc0/(Dp + Lsb), n = 1, 2, 3, …, strong
deviations from the free field conditions,
described above, are observed. In
particular, the acoustic field displays a
localized (trapped) mode.

Flow induced resonance in deep
cavities has been reviewed, among
others, by Rockwell and Naudascher
[33], Rockwell [32] and Gloerfelt [40].
The related whistling of a Helmholtz
resonator in grazing flow has been
studied by Panton [104] and Dequand et
al. [105, 106]. These papers provide a
systematic discussion of the influence of
the geometry of the cavity edges on the
whistling behavior.

7.3.2. Impact of downstream
boundary conditions 
We now consider a pipe system (Fig. 6)
composed of a single T-junction
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forming a closed side branch with
Dp/Dsb ≈ 1. The pipe system is
furthermore delimited upstream by a
settling chamber and downstream by an
open pipe termination. 

When the side branch diameter is of
the same order of magnitude as that of
the main pipe Dp/Dsb ≈ 1, the closed
branch is not an isolated resonator on
its own because the pressure reflection
coefficient Rp for waves traveling in the
side branch towards the junction p-

sb is
very low. In this particular case, the
reflection coefficient is Rp ≈ -1/3, which
implies that only 10% of the wave
energy is reflected. Since the rest of the
energy is radiated into the main pipe,
the upstream and the downstream
acoustic boundary conditions of the
main pipe are clearly critical. 

For length Lj ( j = 1, 2, 3) of the
pipe segments composing the system of
the same order of magnitude, it is
interesting to note that the acoustic
modes of the system will not necessarily
involve a resonance of the closed side
branch segment Lsb = L2. 

The global acoustic behavior of this
pipe system is strongly influenced by the
upstream and the downstream acoustic
boundary conditions of the main pipe. In
a well designed (smooth) nozzle of the
settling chamber, acoustic losses due to
convective effects are negligibly small.
The upstream boundary condition is
then a reflection coefficient of unity for
the acoustical energy [84, 107]: 

(14)

where B±
1 is the complex amplitude of

the total enthalpy fluctuation of the

incoming/reflected waves at the main
pipe inlet and M = U/c0 is the Mach
number of the flow through the main
pipe. 

At the downstream side, when the
pipe termination has sharp edges, the
acoustical energy reflection coefficient
for plane waves traveling in the main
pipe towards the open end is [84, 107]:

(15)

where B±
3 is the complex amplitude of

the total enthalpy fluctuation of the
incoming/reflected waves at the main
pipe outlet.

We see from Eq. (15) that even
moderate Mach numbers will result into
strong sound absorption at a
downstream open pipe termination with
sharp edges. As demonstrated by
Bechert [108] and Hofmans et al. [109,
110], convective absorption can be used
to design an orifice plate which at low
Strouhal numbers behaves as an
anechoic pipe termination for a critical
Mach number. A multiple orifice
configuration can be used to obtain an
anechoic behavior in a wide range of
flow Mach numbers and acoustic
frequencies [80]. This is a robust way to
avoid pulsations, at the cost of
significant pressure losses. 

A small rounding rnozzle of the edges
of the downstream pipe termination
dramatically modifies the acoustic
behavior of the single side branch
system. At low Strouhal numbers SrWeff

the acoustic losses are globally reduced.
In this case the acoustical energy
reflection coefficient of the downstream
termination is close to unity [84]:
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Figure 6: Single side branch resonator with open pipe termination presenting
sharp edges (a) and a rounded edges (b).
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(16)

For Strouhal numbers based on the
radius of curvature of the rounded
termination Srr = frnozzle /U ª 0.2, acoustic
energy production can be observed at
this termination [35, 74, 84, 111]. 

For a single side branch resonator,
in Fig. 7 we compare the pulsation
amplitude observed with a round edged
downstream termination, obtained by
means of a lip-shaped nozzle, with the
pulsation amplitude observed with a
sharp edged termination [74]. An order
of magnitude difference between these
amplitudes is observed. 

When the downstream main pipe
segment has a length L3 related to the
closed branch length L2 by:

(17)

the acoustic standing wave in the single
side branch system has a pressure node

at the T-junction and the resonance
frequencies are fn ≈ (2n - 1)c0/(4L2). If
the upstream main pipe segment L1 has
an arbitrary non-resonant length, then
the resonant acoustic field is localized in
the side branch L2 and the downstream
pipe segment L3. This means that the
upstream acoustic boundary condition
does not influence the acoustic modes.
This is the geometry of the single side
branch systems whose whistling
behaviors are presented in Fig. 7.

We conclude that one should be
careful in drawing any conclusion from
single side branch experiments for
which there is not detailed information
about the acoustic boundary conditions
and about the geometry of the pipe
terminations.

7.4. DOUBLE CLOSED BRANCH
RESONATOR
In the present discussion on double
closed branch resonators, we consider
pipe systems comprising junction
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Figure 7: Effect of the downstream pipe termination on the dimensionless
pulsation amplitude | p'max| /(ρ0c0U) of the quarter wavelength
resonance f1 ≈ c0 / (4L 2). Single side branch system of Fig. 6-a (L1 =
0.18m, L2 = 0.59m, L3 = 1.21m, W1 = W2 = W3 = 0.06m) with square
cross section of the pipes and sharp edges of the junction (dashed line)
[56]. Single side branch system of Fig. 6-b (L1 = 0.12m, L2 = 0.44m, L3

= 0.82m, W1 = W2 =  W3 = 0.06m, rnozzle = 0.03m) with square cross
section of the pipes and sharp edges of the junction (solid line) [74].



elements with diameter of the main pipe
Dp equal to the diameter of the side
branch Dsb.

A double closed branch resonator is
formed by two T-junctions placed along
a main pipe, with each junction
connected to a closed pipe segment, or
by a cross-junction connected to two
closed branches (Fig. 8). In such
configurations, the acoustic field can
display trapped modes which are
confined to the closed pipe segments
and the pipe segment between them.
This occurs at the resonance frequencies
fn ≈ (2n-1)c0/(4L2) when:

(18)

Tonon et al. [112] have carried out
systematic experiments in different
double closed branch resonators (Fig. 8)
with circular pipes of 3.36cm diameter
and atmospheric pressure. A global
overview of the maximum pulsation
amplitudes observed in these systems is
presented in Tab. 1. These
configurations represent all the possible

double closed branch resonators for the
case of a tandem configuration with L2

= L4 ≈ L3/2 (i = n and j = 2n-1) and for
the case of a cross configuration with L2

= L4 and L3 = 0 (i = n and j = 0). The
differences between the various
configurations, exhibiting the same
acoustic behavior, are a difference in the
direction of the main flow and a
difference in the local acoustic flow of
the junctions.

The double closed branch
configurations usually studied in
literature are the system with two closed
side branches in tandem configuration
(Fig. 8-a) and the system with two side
branches in cross configuration (Fig. 8-
l). Although these configurations have
been recognized as the main sources of
pulsation in pipe networks, strong flow
induced pulsations have been measured
also for other configurations, as
illustrated in Tab. 1. However, from the
overview presented in Fig. 8 and Tab. 1
it is clear that the configuration
generating the highest amplitude of
acoustic pulsations is the double side
branch system in cross configuration
(Fig. 8-l). This system is such an
excellent and robust resonator, so that
even 10% of geometrical deviation from
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the ideal geometry for resonance is not
always sufficient to kill the strong
whistling (Sec. 12.1).

The double side branch system in
tandem configuration has been
extensively studied [19, 46, 49, 56, 113,
114]. Strong pulsations at atmospheric
pressure have been usually observed in
laboratory experiments for i = n = 1
and j = 1 (Eq. (18)). For higher
frequencies, the visco-thermal losses
become more important and the
measured pulsations are usually
substantially weaker. However, in
industrial gas transport systems, the
pipe diameters are large and the static
gas pressure p0 is high. As a
consequence visco-thermal losses are
very low and many more whistling
modes can appear. 

Typical pulsation amplitudes in
double side branch systems in tandem
configuration (Fig. 8-a) are lower than
that of double side branch systems in
cross configuration (Fig. 8-l). While the
two systems exhibit similar acoustic and
hydrodynamic characteristics, the visco-
thermal losses in the pipe segment L3

and the differences in the aeroacoustic
sources, due to differences in the local
acoustic field patterns at the junctions,
are responsible for the lower pulsation
amplitudes in the tandem configuration. 

An interesting result, obtained by
Ziada and Bühlmann [19], is that two
closed side branches in close proximity
L2 = L4 >> L3 have an aeroacoustic
behavior very similar to that of the
double side branch system in cross
configuration (Fig. 9). 

It is interesting to note that
resonances of the upstream L1 or the
downstream L5 pipe segments can
significantly affect the response of a
non-symmetric resonant double closed
branch system. As an example, we show
in Fig. 10 the pulsation amplitudes of
two double side branch systems in
tandem configuration (Fig. 8-a)
presenting respectively a long outlet
main pipe L5 and a long inlet main pipe
L1. The experiments have been carried
out for each system by varying the
length of the upstream side branch L2 at
fixed length of the downstream side
branch L4 [115]. The acoustic
resonances of the upstream pipe
segment L1 and of the downstream pipe
segment L5 are clearly observed in Fig.
10 as dips in the evolution of the
pulsation amplitude as function of the
length L2. The same effect has been
found in the field experiments at
Westerbork (Fig. 11) [115]. In these
experiments we observe a dip in the
amplitude of the pulsations measured at

Table 1: Maximum dimensionless pulsation amplitude | p'max| max/(ρ0c0U),
corresponding to the maximum pulsation measured in the velocity
range M = U/c0 = 0 ∏ 0.25, in the different double closed branch
resonators of Fig. 8. The amplitude | p'max| is measured at the end of
the two closed branches: | p'max| = | p'max| 2 = | p'max| 4. The lengths of
the pipe segments are: L1 = 7.41cm, L2 = L4 = 9.91cm, L3 = 16.64cm,
L5 = 6.36cm. Each pipe segment has circular cross section of diameter
D1 = D2 = D3 = D4 = D5 = 3.36cm. The upstream and the downstream
edges of each T-junction and cross-junction are rounded (Fig. 14,
rup,down = 3.3mm, ru,l

up,down
= 3.3mm) [112]. 

Configuration Configuration
(a) 1.8 ·10−1 (g) 8.1·10−3

(b) 1.8 ·10−1 (h) 6.2·10−2

(c) 7.4 ·10−2 (i) 5.7 ·10−3

(d) 7.7 ·10−3 (l) 8.9 ·10−1

(e) 1.5 ·10−2 (m) 1.9 ·10−1

(f) 7.7 ·10−3

p

c U

'max max

ρ0 0

p

c U

'max max

ρ0 0



the end of the upstream side branch
each time the length of this side branch
L2 matches a resonance frequency of the

165m long pipe of 30" diameter placed
upstream of the double side branch
system (Fig. 11).
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Figure 9: Dimensionless pulsation amplitude |p'max| /(ρ0c0U) as function of the
Mach number M = U/c0 [19]. The amplitude |p'max| is measured at the
end of the two closed branches: |p'max| = |p'max| 2 = |p'max| 4. Double
side branch system in cross configuration of Fig. 8-l (L1 = 5.05m, L2 =
L4 = 2m, L5 = 1.7m, D1 = D5 = 0.089m, D2 = D4 = 0.051m) with circular
cross section of the pipes and sharp edges. Double side branch system
in tandem configuration of Fig. 8-a (L1 = 5.05m, L2 = L4 = 2m, L3 =
0.119m,  L5 = 1.7m, D1 =  D3 = D5 = 0.089m, D2 = D4 = 0.051m) with
circular cross section of the pipes and sharp edges.
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Figure 10: Pulsation amplitudes of double side branch systems in tandem
configuration presenting respectively a long outlet main pipe L5 (left)
and a long inlet main pipe L1 (right) as function of the length of the
upstream side branch L2. The pipes have circular cross section of
diameter 30mm, the junctions have rounded edges rup,down = 3mm and
the measurements have been carried out at 10bar [115]. The
dimensionless pulsation amplitude |p'max|2/(ρ0c0U), measured at the
closed end of the upstream side branch L2, is presented as function of
the dimensionless whistling frequency HeL = fL2/c0. Downstream or
upstream pipe resonances are indicated by the arrows.
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7.5. MULTIPLE CLOSED BRANCH
RESONATOR
7.5.1. Multiple deep side branches
The global acoustic behavior of multiple
deep side branch systems with more
than two side branches is difficult to
predict intuitively. These systems
display some acoustic similarities with
single or double side branch systems.
However they show some peculiarities
so that they cannot be acoustically
reduced to a collection of simpler
elements [116]. 

In Fig. 12-b we show a survey of
pulsation frequencies and
dimensionless amplitudes observed in a
section of the compressor station of

Ommen [4, 117]. This section presents
two separate sets of six equally spaced
closed side branches along a main pipe,
formed respectively at the suction side
and at the discharge side of six
compressors (Fig. 12-a). The
investigation of the aeroacoustic
behavior of the discharge side of the
compressor station has been carried out
by Tonon et al. [116] in an atmospheric
scale model with pipe diameters of Dp =
Dsb = 3.36cm. These scale model
experiments provided a good prediction
of maximum pulsation amplitudes
observed in field data. Furthermore,
higher Strouhal numbers were observed
than in field experiments. 

Figure 11: Pulsation levels |p'max| 2 as function of the flow velocity U and the
length of the upstream side branch L2 in the field experiments of
Westerbork [115]. The pressure fluctuation is measured at the closed
end of the upstream side branch L2. The pipes have circular cross
section, the junctions have rounded edges rup,down = 2.5'' and the
measurements have been carried out at 60bar. We observe dips in
amplitude each time the length L2 of the upstream side branch
corresponds to a resonance mode of the upstream pipe of 165m
length and 30'' diameter. Resonances of the upstream pipe are
indicated by the empty arrows. 



One would expect that the very
strong pulsations, observed in the six
side branch systems described above,
are due to the fact that the side branches
have all exactly the same length.
Detuning the length of the side

branches seems a logical approach to
avoid strong pulsations. As discussed in
Sec. 12.1 this approach does not always
reduce sufficiently the pulsation levels.
Using spoilers, as discussed in Sec. 12.3
is a promising alternative to detuning.
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Figure 12: Section of the compressor station Ommen [4] displaying flow induced
pulsations (a). Pulsation frequencies f and dimensionless pressure
fluctuation amplitudes at the closed end of side branch 1
|p'max| 1/(ρ0c0U) and side branch 3 |p'max| 3/(ρ0c0U) of the suction and
the discharge sides of the compressor section (b). The gas compressed
at the station is natural gas from Groningen [117] with pressure p0 =
60bar and temperature T0 = 278K. The edges of all the junctions are
rounded rup,down = 9.1cm. The Strouhal number is based on the side
branch diameter SrD = fDsb/U.
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7.5.2. Multiple shallow side
branches
A row of shallow closed side branches,
presenting length comparable with the
diameter Lsb /Dsb = O(1), placed along a
main pipe of length Lmp with both
terminations open, displays self-
sustained oscillations very similar to
those found in corrugated pipes
[118–120]. The low frequency pulsation
amplitudes will be typically of the order
|p'main| /(ρ0c0U) = O(10-2) and appear
around SrWeff = 0.6 (Fig. 13). 

At low frequency, the acoustic modes
of the multiple shallow side branch
systems correspond to the longitudinal
global pipe modes of these systems
[118–120]. These modes have frequencies
fn ≈ nceff /(2Lmp), n = 1, 2, 3, …, where the
effective speed of sound [121] is:

(19)

This formula is obtained assuming
that the inertia in the acoustic flow is
not affected by the side branches, while

the cavity volume Vc is added to the
main pipe volume Vmp to account for the
effect of the compressibility [118, 120]. 

An interesting aspect of the
multiple shallow side branch systems is
that, as the main flow velocity U
increases, one reaches a Brillouin zone
and finds a frequency gap in which the
system does not whistle [118]. 

As in the case of the single closed
branch resonator (Sec. 7.3.2), the system
of multiple shallow side branches
excites a global mode rather than a
trapped mode. It is therefore very
sensitive to the upstream and
downstream boundary conditions. 

8. SOUND SOURCES
8.1. MAIN FLOW CONFIGURATIONS
8.1.1. Main flow configurations of a
T-junction
The main geometrical characteristics of
a T-junction (Fig. 14-a) are the diameter
of the main pipe Dp, the diameter of the
side branch Dsb and the radius of
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Figure 13: Pulsation behavior of a multiple shallow side branch system composed
by 15 side branches of 3.36cm depth along a main pipe of Lmp = 1.5m
length [118]. The side branches are equispaced along the main pipe
and the junctions present sharp edges. The pipes have circular cross
section with diameter of 3.36cm. The dimensionless whistling
frequency HeL = fLmp/c0 and the dimensionless pulsation amplitude
|p'main| /(ρ0c0U) are presented as function of the flow velocity U. The
pressure fluctuation amplitude |p'main| is the amplitude of the
longitudinal global pipe mode of the system.



curvature rup,down of the edges of the
junction. The three pipe segments
meeting at the T-junction are called
upstream main pipe (segment 1),
downstream main pipe (segment 3) and
side branch (segment 2). 

T-junction elements with Dsb/Dp =
O(1) are common in pipe systems [5, 6,
19, 45, 46, 56, 71, 72, 74, 113, 122]. We
therefore start our discussion on the
main flow configurations of a T-
junction by considering side branches
with diameter Dsb close to the main pipe
diameter Dp. A commonly used ratio is
Dsb/Dp = 0.8. 

When one of the pipe segments
(branches) is closed, flow separation
occurs at the T-junction and a shear
layer is formed. Coupling of the shear
layer instability with the acoustic field
provides a mean to transfer energy
between the steady main flow and 
the acoustic flow. Acoustical energy can
be produced or absorbed depending on
the flow and acoustic conditions.

In most technical applications of
pipe networks, the pipes have circular
cross sections. Practical exceptions are
air conditioning systems, in which
rectangular cross sections are not
unusual. Also for research purposes
(flow visualization, laser Doppler
anemometry, ...) experiments have been
carried out in pipes with rectangular
cross sections. While the flow within
circular pipes is essentially three
dimensional, the global aeroacoustic
behavior is the same as for rectangular

pipes [56] when Dsb/Dp is close to unity.
For example, the optimal Strouhal
number SrWeff ,opt for the maximum of
pulsation amplitude for circular pipes
can be translated into that for
rectangular pipes by introducing the
concept of effective (average) cavity
width Weff (Sec. 3). The observed
pulsation levels for circular pipes are, in
the moderate amplitude range (Sec. 8.3),
typically a factor two lower than for
rectangular pipes. For high amplitudes
(Sec. 8.3), the geometry of the cross
sections will mainly affect the amplitude
as a result of the stronger sensitivity of
rectangular cross sections to wall
vibrations. The coupling with wall
vibrations tends to lower the pulsation
levels [56], as discussed in Sec. 11.

At each T-junction we can
distinguish three main flow
configurations, depending on which of
the pipe segments is closed (Fig. 15-a)
[6, 74, 113, 122]. 

In flow configuration (T-a) the side
branch is closed. The main flow travels
from the upstream pipe 1 to the
downstream pipe 3 and it separates from
the upstream edge to form a shear layer
between the main flow and the stagnant
fluid in the closed side branch. 

In flow configuration (T-b) the main
flow turns from the upstream pipe 1 into
the side branch 2 because the
downstream main pipe segment 3 has
closed pipe termination. In this case,
flow separation can occur at three places:
the upstream edge, the downstream edge
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and on the wall opposite to the side
branch. When the edges of the junction
are sharp rup,down/Dsb = 0 flow separation
will certainly occur at both edges and a
free jet will be formed into the side
branch. For values of rup,down/Dsb ≥ 0.1
[123] the flow separation at the edges is
strongly reduced. The flow separation at
the wall opposite to the side branch
always occurs because of the
deceleration of the flow in the closed
downstream pipe 3. The position at
which this separation occurs is difficult
to predict. In contrast to separation at a
sharp edge, this separation point is
expected to move under the influence of
acoustic perturbations. 

In flow configuration (T-c) the
upstream main pipe 1 is closed. The
main flow turns from the side branch 2
into the downstream main pipe 3 and
flow separation occurs at the outer side
of the flow bend (upstream edge). Flow
separation at the interior of the flow
bend will occur if the downstream edge
is sufficiently sharp. In view of the
associated energy losses, separation at
the inner side of the flow bend is usually
avoided by choosing a large radius
rdown/Dsb. In that case, due to the Coanda
effect, the jet flow formed by separation
at the upstream edge is expected to
remain attached to the wall at the inner
side of the bend. 

In the case of side branches with
diameter Dsb considerably smaller than
the main pipe diameter Dp, the main

flow configurations are different from
those described above. The main
difference between narrow side
branches Dsb/Dp << 1 and wide side
branches Dsb/Dp = O(1) is that in the
main flow configuration (T-c) a free jet
is formed in the main pipe.
Furthermore, in technical applications,
the radius of curvature rup,down of the
edges of a T-junction with a narrow side
branch are usually relatively large
compared to the side branch diameter
Dsb, values of rup,down/Dsb = O(1) are
common. These cases have not yet been
studied.

The evaluation of the efficiency of
the main flow configurations described
above as sound sources can be
qualitatively (roughly) carried out by
evaluating the experimental results of
closed branch systems. From the
experiments on the double closed
branch resonators of Fig. 8, presented in
Tab. 1, it is evident that the
configuration (T-a) is the major
pulsation driver, since the highest
pulsations are observed only in systems
presenting this main flow configuration
in one of the junctions. However, these
experimental results do not provide
information about the efficiency of flow
configurations (T-b) and (T-c) as sound
sources. A quantitative and more
complete evaluation of the sound
sources will be obtained by means of
source modeling. We will discuss this
topic in Sec. 9.

U
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(a) Main flow configurations

(b) Acoustic flow limit cases

Figure 15: Definition of main flow configurations (a) and acoustic flow limit cases
(b) in a T-junction.



8.1.2. Main flow configurations of a
cross-junction
The main geometrical characteristics of
a cross-junction (Fig. 14-b) are the
diameter of the main pipe Dp, the
diameter of the side branches Dsb and
the radius of curvature ru,l

up,down of the
edges of the junction. The four pipe
segments meeting at the cross-junction
are called upstream main pipe (segment
1), downstream main pipe (segment 4),
upper side branch (segment 2) and
lower side branch (segment 3). 

At each cross-junction we can
distinguish three main flow
configurations, depending on which
couple of pipe segments is closed (Fig.
16). We start our discussion on the main
flow configurations of a cross-junction
by considering side branches with a
diameter Dsb close to the main pipe
diameter Dp, as commonly found in
technical applications Dsb/Dp = O(1). 

In flow configuration (C-a) both the
side branches are closed. The main flow
travels from the upstream pipe 1 to the
downstream pipe 4 and it separates from
the upstream edges to form two shear
layers between the main flow and the
stagnant fluid in the two closed side
branches. This configuration is, from
the hydrodynamic point of view, similar
to the main flow configuration (T-a) of
T-junction elements (Fig. 15-a). 

In flow configuration (C-b) the
main flow turns from the upstream pipe
1 into one of the side branches (2 or 3).
The downstream main pipe segment 4
and the other side branch (3 or 2) have
both a closed pipe termination. Due to
the geometrical symmetry of the cross-
configuration, there are no fluid

dynamic differences between the cases
in which the main flow enters the upper
side branch 2 or the lower side branch 3.

In flow configuration (C-c) the
main flow turns from one of the side
branches (2 or 3) into the downstream
main pipe 4. This configuration is
similar to flow configuration (C-b) for
Dsb/Dp = O(1).

In the case of narrow side branches
Dsb/Dp << 1, the flow configuration (C-
c) is substantially different from flow
configuration (C-b). The main
difference is that a free jet is formed in
the main pipe. This configuration has
not been studied until now.

Analyzing the results of the
experiments on the double closed
branch resonators of Fig. 8, presented in
Tab. 1, we can observe that the
configuration (C-a) is a driver of high
amplitude oscillations. However, a
quantitative and more complete
evaluation of the sound source will be
obtained by means of source modeling
(Sec. 9).

8.2. LOCAL ACOUSTIC FIELD OF T-
JUNCTIONS AND CROSS-JUNCTIONS
As defined by Howe [23, 41, 42], the
acoustic field is a potential flow (Eq.
(2)). At low frequencies, only plane
waves propagate along straight pipe
segments. At a distance of about one
pipe diameter from a junction, the
acoustic field is uniform and can be
described in terms of two plane waves
travelling in opposite directions (Sec.
7.2). This uniform acoustic velocity
field drives within the junction a
potential flow, which in first order
approximation is incompressible. 
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It is important to realize that the
shape of the edges is crucial in the local
acoustic field distribution. At a sharp
edge, the acoustic velocity is locally
singular. This is a consequence of the
definition of the acoustic flow as
potential flow. Furthermore, the edge
shape is crucial in the aeroacoustic
behavior because it determines the flow
separation and the consequent vortex
shedding. 

From the energy corollary of Howe
(Eq. (5)) we see that at a sharp edge we
combine the ideal conditions for a
strong interaction between the acoustic
and the hydrodynamic flow fields. We
need therefore an accurate description of
the acoustic field near such singularities.
A modal expansion of the solution of the
equation of Helmholtz as proposed by
Keefe [92] and Dubos et al. [95] will
diverge at such singularities. This is
therefore not a suitable approach.
Assuming a locally incompressible two-
dimensional potential flow one can
obtain some insight by using complex
function theory with conformal
mapping [56]. This corresponds to the
use of a low frequency Green’s function
as proposed by Howe [23, 76]. For a
more general case, as for pipes with a
circular cross section and junctions with
rounded edges, one has to use a
numerical method to determine the
detailed acoustic flow.

An important result, concerning
the effect of the edge shape on the
aeroacoustic behavior of junction
elements, was obtained by Bruggeman
et al. [56]. This was the demonstration
of the crucial role of the shape of the
upstream edge of the T- junctions for a
tandem of two closed side branches
(Fig. 8-a, L2 = L4 ≈ L3/2). A sharp
upstream edge considerably reduces the
pulsation amplitudes. In contrast with
this, the downstream edge geometry was
found to be less critical. The effect
observed by Bruggeman et al. [56] on T-
junctions has been confirmed for cross-
junctions [45, 48] and for Helmholtz
resonators in grazing flow [105, 106]. 

8.2.1. Acoustic flow limit cases of a
T-junction
The acoustic flow distribution in T-
junction elements is usually quite
complex. For the sake of simplicity
some authors [74, 113] distinguish three
limit cases. These acoustic flow limit
cases, presented in Fig. 15-b, consist of
an acoustic flow oscillating between two
of the three pipe sections of the T-
junction. 

The strongest pulsations in the
double closed branch systems in tandem
configuration of Fig. 8 display type (T-2)
and (T-3) cases. The type (T-1) case
(grazing acoustic flow) is dominant in
the case of a long row of shallow closed
side branches discussed in Sec. 7.5.2.

The main flow configurations (T-a),
(T-b) or (T-c) (Fig. 15-a) combined with
the acoustic flow limit cases (T-1), (T-2)
or (T-3) (Fig. 15-b) form nine limit cases
which we denote by (T-a1), (T-a2), (T-
a3), (T-b1), (T-b2), (T-b3), (T-c1), (T-c2)
and (T-c3). 

For wide side branches, Dsb/Dp =
O(1), the limit case (T-a2) presents a
local acoustic field near the edges that is
essentially different from that of the
case (T-a3). This is due to the much
larger acoustic velocity at the interior of
the bend than at the exterior. As shown
by Bruggeman [58], the (T-a2) limit case
with sharp edges has a local acoustic
velocity at the upstream edge that is a
factor 3 higher than at the downstream
edge. This is the opposite for the (T-a3)
limit case. A spoiler placed at the
upstream edge of the limit case (T-a2)
will therefore be much more efficient
than a spoiler at the upstream edge of
the limit case (T-a3) [56]. This
asymmetry disappears for narrow side
branches Dsb/Dp << 1. 

8.2.2. Acoustic flow limit cases of a
cross-junction
As for the case of T-junctions, in cross-
junction elements we can distinguish
many limit cases of acoustic flow
distribution.



Despite the variety of the
combinations between the main flow
configurations (Fig. 16) and the acoustic
flow limit cases that can be obtained for
a cross-junction, the only case discussed
in literature is the limit case of an
acoustic flow oscillating normal to the
main flow, which is grazing along two
opposite closed side branches. We will
refer to this case as the (C-a1) limit case.
The acoustic flow is symmetric with
respect to the side branch axis, which is
quite different from all the cases
discussed for the T-junction. We
therefore expect a different aeroacoustic
source behavior.

8.3. LOW, MODERATE AND HIGH
AMPLITUDE OSCILLATIONS
From the analysis of flow configuration
(T-a) (Fig. 15), Bruggeman et al. [56]
observed three different behaviors of
the shear layer depending on the
dimensionless pulsation amplitude

.
For low acoustic velocities at the

sound source , the
amplitude of the perturbations of the
shear layer increases exponentially with
the distance x from the upstream edge of
the junction. This amplification is of
the order of , where Ucon is the
convective velocity of the vorticity in
the shear layer (Sec. 3). This
corresponds to an amplification by a
factor e2π ≈ 535 over one hydrodynamic
wavelength. Hence, perturbations in the
main flow velocity as small as

induce perturbations
in the velocity field of the shear layer of
order unity for the first hydrodynamic
mode m = 1. For such large
perturbations, a linear theory is not
valid.

This provides the condition
for a linear behavior of

the shear layer upon acoustic
perturbations for m = 1. For higher
hydrodynamic modes m > 1, this
condition is even more restrictive,

. 

In the linear regime (very low
pulsation amplitudes) the strength of
the sound source is linear with the
pulsation amplitude, this implies that
the acoustic source power <Psource>
scales quadratically with the pulsation
amplitude . The acoustic power
losses <Ploss>, due to visco-thermal
damping <Pv-th> and acoustic radiation
<Prad> also depend quadratically on
the pulsation amplitude . In
general, one would therefore expect the
system to be either stable (<Psource>
lower than <Ploss>) or unstable
(<Ploss> lower than <Psource>). This
implies either an exponential decay
respectively growth in time of
perturbations. An exact balance (Sec. 6)
between acoustic source power
<Psource> and acoustic power losses
<Ploss>, if it is achieved, implies neutral
stability (Fig. 17-a). Hence an energy
balance, if satisfied at one amplitude,
would be satisfied at any other
amplitude. 

In the low amplitude regime
, the strength of the

sound source is almost linear with the
pulsation amplitude and the acoustic
source power <Psource> is almost
quadratic with the pulsation amplitude

. The acoustic losses <Ploss>
remain quadratic with the pulsation
amplitude . The balance (Sec. 6)
between acoustic source power
<Psource> and acoustic power losses
<Ploss> determines the pulsation
amplitude (Fig. 17-b). However, the
acoustic pulsations in the low amplitude
regime are quite unstable. A marginal
increase of the acoustic losses can make
them disappear.

Pulsation amplitudes of
have been defined

by Bruggeman et al. [56] as the moderate
amplitude regime. For moderate
amplitudes, non-linearity induces a
concentration of the vorticity, shed at the
upstream edge, into coherent vortex
structures. These discrete vortices are
clearly observed in flow visualizations
(Fig. 3-b) [32, 34, 45, 47, 48, 58, 124–126]
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and numerical simulations [45, 48, 50,
74, 113, 127, 128].

In the moderate amplitude regime,
the perturbation of the shear layer at the
upstream edge is relatively small O(10-

1), so that the acoustic field only triggers
the concentration of vorticity into
discrete vortices. The amount of
vorticity shed (circulation of the
vortices) and the path of the vortices are
not strongly affected by the amplitude
of the acoustic pulsation and the source
strength is therefore almost
independent of the amplitude of the
acoustic field. 

At moderate amplitudes, the
formation of a new vortex is observed

[56, 122, 129] each time that the acoustic

velocity changes direction from outside

the side branch towards the inside of the

side branch at the upstream edge of the

junction. The vortical structures are

then convected downstream with a

velocity proportional to the main flow

velocity Ucon ≈ 0.4U [56]. For the limit

cases (T-a2) and (T-a3), this determines

the Strouhal condition for maximum

pulsations amplitude SrWeff ,opt ≈ 0.4. The

acoustic source power <Psource> is linear

with the pulsation amplitude ,

while the acoustic power losses <Ploss>

are still quadratic. Hence, the oscillation

amplitude is stable (Fig. 18-a). 
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Figure 17: Energy balance of the self-sustained oscillations. Qualitative
representation of the acoustic source power <Psource> (solid line) and
the acoustic power losses <Ploss> (dashed line) in the linear (very low
amplitude) regime (a) and in the low amplitude regime (b).



High pulsation levels, with acoustic
velocity at the sound source of the order
of magnitude of the main flow velocity

, are usually observed in
pipe systems with negligible visco-
thermal and radiation losses. Under
such conditions, the pulsation
amplitude becomes almost independent
of the static pressure in the system and
details of the geometry of the junction
become essential. As explained by Howe
[39], in the limit of such high pulsation
levels, there is a balance between sound
production by vortices <Psource>, that
scales linearly with the pulsation
amplitude , and sound absorption
by vortex shedding (vortex damping)
<Pvort>, that scales with the  third
power of the pulsation amplitude .
This is due to the effect of the acoustic
field on the amount of vorticity shed at

the upstream edge and on its effect on
the path of the vortices. Also the sound
absorption due to “spurious” vortex
shedding at the downstream edge
becomes increasingly important at large
pulsation amplitudes. Besides vortex
damping, the transfer of energy to
higher harmonics as a result of the non-
linear wave steepening can result into
acoustic losses <Prad-nl>. 

These high pulsation levels are
likely to occur when the upstream edge
of the junction is rounded [48, 50, 51,
56], because the initial sound absorption
due to vortex shedding (vortex
damping) is lower with a rounded edge
than with a sharp edge (Sec. 8.2). In
some cases, however, configurations
with sharp edges can display high
pulsation levels (Fig. 3-a).
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In the high amplitude regime the
path of the vortices (Fig. 19) are
significantly influenced by the
amplitude of the acoustic field [45, 48,
50, 56]. The vortices enter quite deep
into the side branch rather than
following the line of the unperturbed
shear layer. This may qualitatively
explain the decrease of the optimal
Strouhal number SrWeff ,opt observed by
Bruggeman et al. [56] and by Ziada [47].
Deeper in the side branch the
convective velocity of the vortices Ucon

is lower than at the junction. This
increases the travel time of the vortices
across the junction for a given main flow
velocity U. A higher flow velocity U is
then needed to make the vortex reach
the downstream edge of the junction
within an oscillation period. This
implies a decrease of the optimal
Strouhal number for maximum
pulsations, that, for high amplitude
pulsations, is typically SrWeff ,opt ≈ 0.3.

In the high amplitude regime, the
pulsations continue below Strouhal
numbers for which they would have
disappeared at low or moderate
amplitudes. As a consequence hysteresis
is observed [47, 56]. This means that the
strong pulsations of a given mode
(acoustic and hydrodynamic) disappear at
a higher velocity upon flow acceleration
than the velocity at which they reappear

upon flow deceleration. Furthermore,
these transitions are abrupt (on-off). 

At high amplitude oscillations, the
phase of the oscillation period, at which
a new vortex is shed, changes compared
to the case of moderate amplitude
oscillations. This shift in phase for the
generation of a new vortex can almost
reach a quarter of the oscillation period
[45]. 

In field experiments, as high
Reynolds numbers are not unusual, one
should suspect the occurrence of
turbulence in the acoustic boundary
layers in the closed branches. For  an
acoustic laminar boundary layer thickness

where m is the
dynamic viscosity of the fluid, turbulence
is expected when [130].
The transition from laminar to turbulent
acoustic boundary layers has been
reported as potential amplitude limiting
effect in thermoacoustic devices [52].
However, this effect has never been
reported in laboratory experiments on
flow induced pulsations. 

9. SOURCE MODELING
9.1. EXPERIMENTAL
CHARACTERIZATION OF THE SOUND
SOURCES 
The whistling of a flute presents many
similarities with the pulsation of a pipe
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Figure 19: Periodic vortex formation in the double side branch system in cross
configuration of Fig. 8-l with sharp edges and square cross section of
the pipes (L2 = L4 = 0.564m, W1 = W2 = W4 = W5 = 0.06m, U = 35m/s,
f = 1/T = 156Hz, SrWeff = 0.27, ) [45]. The time at which
the acoustic velocity changes direction from outside the side branch
towards the inside of the side branch at the upstream edge of the
junction is t /T = 0. Please note that the vortex does not impinge on
the downstream edge of the junction.
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system with closed branches. In a flute,
the sound is generated by the instability
of the free jet formed by blowing across
the mouth of the instrument. The jet
oscillation couples with the acoustic
resonances of the pipe, leading to a
feedback mechanism similar to that
occurring in pipe systems with closed
branches. 

The early models of the
aeroacoustic behavior of a flute, based
on the assumption that the jet and the
resonant acoustic field form a feedback
loop, consist of predicting the
oscillations condition (oscillation
threshold) by means of the linear theory.
These models have been established by
imposing a match between the resonator
impedance and the source impedance. 

A first method to determine the
source impedance in a flute has been
introduced by Coltman [131]. Assuming
a harmonic oscillation, he generalized
the impedance balance to non-linear
systems. He developed a measurement
technique to measure the source
impedance, defined as the pressure
difference across the mouth of the
instrument divided by the acoustic
volume flux through the mouth. In
these experiments, the frequency and
the amplitude of the acoustic field have
been imposed by a loudspeaker placed at
the end of the pipe of the flute.
Measurements have been carried out as
a function of the acoustic frequency, the
amplitude of the acoustic field and the
velocity of the jet at the mouth of the
flute. In a complex representation the
measured impedance is, for a given
amplitude of the acoustic field, a spiral
in the complex plane around the origin.
The real part is in phase with the
acoustic volume flow oscillation and
therefore provides the energy transfer
between the flow field and the acoustic
field. 

An experimental technique to
characterize the sound source in a single
side branch configuration (Fig. 6-a, L1

<< L2 ≈ L3/2), in which the (T-a3) limit
case prevails (Fig. 15), has been proposed

by Bruggeman et al. [56, 58]. This
method consists of applying an energy
balance between sound production and
acoustic dissipation (Sec. 6). The
acoustic source power <Psource> is then
determined by measuring the acoustic
power losses <Ploss>. These losses are
evaluated by using a two microphone
method to measure the acoustic radiation
at the main pipe terminations <Prad>
and the theory of Kirchhoff [96] to
estimate the visco-thermal damping
<Pv-th>. By carrying out this kind of
measurements for various values of
radiation losses at the downstream
termination, Bruggeman et al. [56, 58]
found that, at moderate amplitudes, the
acoustic source power <Psource> scales
linearly with the acoustic amplitude

(Sec. 8.3). 
For a double side branch system in

cross configuration (Fig. 8-l), Peters [45]
and Kriesels et al. [48] obtained, by
means of the technique introduced by
Bruggeman et al. [56, 58], an acoustic
source power <Psource> showing
saturation at high amplitudes.

Using a method similar to that used
by Coltman [131], Graf and Ziada [71,
72] carried out measurements for
characterizing the source impedance in
double side branch systems in cross
configuration [71] and tandem
configuration [72]. A unique feature of
these experiments is that the source
impedance was determined for circular
branches exposed to fully developed
turbulent flow in the main pipe, which
is similar to the geometrical and flow
conditions in industrial applications. In
these experiments, a loudspeaker was
used to excite the system at the
resonance frequency of the branches,
and each series of measurements was
carried out at fixed pulsation amplitude,
while the Strouhal number was varied
by changing the flow velocity in the
main pipe. The source impedance

, where Dps is the
acoustic source pressure across the shear
layer and is the acoustic velocity at
the branch opening, results in a spiral
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evolution in the complex plane (Fig.
20). An important aspect of the
experiments carried out by Graf and
Ziada [71, 72] is the quantitative
evaluation of the non-linear saturation
of the shear layer disturbances (Sec.
8.3). Furthermore, the results indicate,
in the moderate amplitude regime, a
square root dependence of the acoustic
source power <Psource> on the pulsation
amplitude , rather than a linear
dependence, as proposed by Bruggeman
et al. [56, 58]. Using the empirical data
of Graf and Ziada [71, 72] allows
predicting the pulsation behavior of
double side branch systems, for various
depths of the side branches and static
pressures. Typical accuracy of these
predictions is about 20% in amplitude.
Since the measurements of Graf and
Ziada [71, 72] have been carried out
only for junctions with sharp edges and
in view of the accuracy in the prediction
of pulsation amplitudes, this would call
for a systematic reproduction of these
measurements for T-junctions and
cross-junctions with rounded edges,

which are common in industrial
applications.

More recently, Oshkai and Yan [53]
and Oshkai et al. [54], proposed a
combination of digital particle image
velocimetry (DPIV), acoustic pressure
measurements and phase-locking
techniques in order to provide insight
into the mechanism of acoustic power
generation in a double side branch
system in cross configuration (Fig. 8-l). 

9.2. LINEAR MODELS
The first attempt to predict self-
sustained oscillations was to use the
results of Michalke’s theory [67] in
linear models applied to flow induced
cavity noise [59, 61, 78, 132–134]. In
these models, a Kutta-like condition has
been used at the upstream edge, where
flow separation occurs, to estimate the
perturbation of the shear layer due to
acoustic oscillation. The spatial
amplification of the perturbation has
been calculated by using the stability
theory of Michalke [67] for inviscid
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parallel free shear layers (Sec. 5). The
source of sound has been then assumed
to be a dipole located at the downstream
edge and resulting from the “impact” of
the shear layer disturbances on this
edge. These linear models do not
explain essential effects, such as the
influence of the shape of the upstream
edge of the cavity on the pulsation
behavior. One should furthermore
realize that the impingement of the
shear layer disturbances on the
downstream edge is not essential for the
sound production (Sec. 2 and Fig. 19).

An alternative linear model has
been introduced by Elder [135], in
which the shear layer is assumed to act
as an oscillating “membrane” driving
the cavity oscillations. 

Möhring [136], Crighton [137] and
Howe [39] proposed various
formulations to predict the linear
response of an infinitely thin shear
layer. The formulation of Howe [39],
considering the case of grazing flow
along a thin walled orifice, combines the
membrane concept of Elder [135] with
an integral formulation of the Kutta
condition at the upstream edge of the
orifice. In agreement with experimental
evidence, the singularity at the
downstream edge does not seem to be
crucial in the predicted source of sound.
Furthermore, this formulation does
predict the occurrence of limited
Strouhal ranges for sound production,
as confirmed by measurements carried
out by Kooijman et al. [138]. These
experimental results, in terms of source
impedance, are however quite different
from the results of the formulation of
Howe [39]. Furthermore, they show a
strong dependence of the Strouhal
ranges for sound production and of the
acoustic amplitude on the structure of
the boundary layer upstream of the
separation point and on the shape of the
edges of the cavity. A quantitative
theoretical prediction of the effect of the
boundary layer structure on the source
impedance is not yet available. 

Recently, Åbom et al. [139, 140]
proposed to include the effect of vortex-
sound interaction in linear multi-port
models in order to predict self-sustained
oscillations. Multi-port models are
linear aeroacoustic models, which split
the problem in a passive part, the
scattering matrix, and an active part
describing the sound sources. The
active part, representing the vortex-
sound interaction has been included as
part of the passive data expressed by
means of the scattering matrix. This
approach leads to scattering matrices
that contains information about linear
damping or amplification of sound by
vortex-sound interaction. 

9.3. SINGLE VORTEX MODEL
9.3.1. Single vortex model with
calculated path and circulation
The model of Howe [23], for the
aeroacoustic behavior of a flute, presents
a first attempt to describe the sources of
sound in a flute in terms of vortex
sound. In his model, Howe [23], focused
on the effect of vortex shedding at the
sharp downstream edge of the mouth of
the flute, the labium. Assuming that the
vorticity can be concentrated into a
single line vortex, the circulation of the
vortex is determined by a Kutta
condition imposed at the edge of the
labium. While Howe [23] predicts that
this vortex produces acoustical energy,
experiments show that it absorbs sound
[141, 142]. 

The idea of Howe [23] has been
applied by Bruggeman et al. [56, 58] to a
T-junction with sharp edges, in order to
describe the vortex formed at the
upstream edge. This model fails because
the vortex circulation and its convective
speed diverge as the vortex approaches
the downstream wall of the T-junction.
Attempts by Peters [45] to improve this
single vortex model were not successful.
While this model is not able to describe
the vortex formed at the upstream edge,
it can however be used to predict the
sound absorption at high amplitudes by
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vortex shedding at a sharp downstream
edge of the T-junction. 

9.3.2. Single vortex model with
imposed path and calculated
circulation
Based on detailed flow measurements in
the opening of a Helmholtz resonator,
Nelson et al. [124] proposed a simplified
vortex model in which a line vortex is
assumed to be formed, at the upstream
edge of the cavity, each time the acoustic
flow turns into the cavity. The
circulation of this vortex is assumed to
correspond to the integral of the
vorticity shed at the upstream edge and
the vortex is assumed to be convected
downstream at a constant speed Ucon,
along a straight line between the
upstream and the downstream edges. As
the vortex flow is assumed to be
independent of the oscillation
amplitude this is a moderate amplitude
model. Using this vortex model in
combination with vortex sound theory
[23], Nelson et al. [62] provide a
qualitative explanation of the sound
generation in a Helmholtz resonator. 

An attractive aspect of the model of
Nelson et al. [62, 124] is that it opens the
way for analytical models of the sound
sources at junction elements. A first
analytical solution has been obtained by
Hirschberg and Rienstra [143] by
assuming a uniform acoustic flow
normal to the vortex path. This
corresponds roughly to the condition
found at T-junctions and cross-
junctions with rounded edges. 

Combing the model of Hirschberg
and Rienstra [143] with analytical
models for the acoustic losses yields a
surprisingly reasonable prediction of
the pulsation amplitude for the first
hydrodynamic mode. However, for
higher hydrodynamic modes, this
model tends to overestimate drastically
the pulsation amplitudes. Furthermore,
the model does not predict the
amplitude dependence of the optimal
Strouhal number SrWeff,opt. In fact, this

Strouhal number is imposed by the
convective velocity Ucon which is
introduced in the model as an empirical
parameter [50, 143].

For the case of a sharp edged T-
junction, Bruggeman et al. [56, 58] used
the vortex model of Nelson et al. [62,
124] in combination with vortex sound
theory [23] to explain the essential
differences in the aeroacoustic behavior
of the (T-a1), (T-a2) and (T-a3) limit
cases (Fig. 15). This model provided a
qualitative explanation of the effect of
the edge shape on the whistling
behavior of a double side branch system
in tandem configuration (Fig. 8-a, L2 =
L4 ≈ L3/2).

9.3.3. Single vortex model with
imposed path and distributed
vorticity
While the model of Nelson et al. [62,
124] in combination with vortex sound
theory [23] provides a good insight in
the aeroacoustic behavior of junction
elements, it fails to give accurate
quantitative predictions. The sharp
edges imply a singularity of the acoustic
field, which in combination with the
imposed straight path of the vortices
results in an overestimation of the
acoustic source power <Psource> by
almost a factor of five. This interaction
between the singularity in the vortex
model (line vortices with concentrated
vorticity) and the singularity in the
acoustic field can be avoided by
assuming a distributed vorticity along a
line segment, as proposed by
Bruggeman [58], or by removing the
downstream singularity in the acoustic
flow distribution, as proposed by
Dequand et al. [50]. Both these
modifications reduce the
overestimation by about a factor two.

Kook and Mongeau [63] proposed a
modified model of Nelson et al. [62,
124] in which, in order to take into
account the diffusivity of the vortices
travelling downstream, a vortex
concentration parameter has been



introduced. This empirical parameter
has been estimated, for the case of a
Helmholtz resonator, by using absolute
cavity pressure amplitudes obtained
experimentally over a range of free
stream velocities. This vortex model has
been then implemented in a feedback
loop model, where the flow excitation
and the acoustic response are
approximately modeled as a forward
gain function and as a backward gain
function respectively.

9.3.4. Quasi-steady limit
An essential limitation of the single
vortex models, is that they are not
suitable to describe the low Strouhal
number limit SrWeff << 1. In this limit
one can use a quasi-steady model in
which the sound source is defined as the
steady linear perturbation in total
enthalpy across the junction ∆Bs. 

An attempt to predict the
aeroacoustic behavior of T-junctions at
low Strouhal numbers has been done by
Hofmans [74]. He developed analytical
models for the quasi-steady behavior of
sharp edged T-junctions, which provide
predictions in good agreement with
experiments from literature [144]. 

9.4. MODELS BASED ON THE
NUMERICAL SOLUTION OF THE
FLOW FIELD
Source models based on the numerical
solution of the flow field have been
developed by many authors. These
models consist of two main steps. The
first step is to solve numerically the flow
field, imposing the acoustic field as
boundary condition. The second step is
to use the solution of these numerical
calculations to evaluate the sources of
sound. 

9.4.1. Vortex blob simulations 
Early work [145–147] on models based
on the numerical solution of the flow
field has been carried out using
frictionless flow simulations based on
discrete vortex methods. These models,

applied to various resonators (parallel
plates, double diaphragm, Hartman
generator), successfully determine the
Strouhal conditions for optimal sound
production by vortex shedding SrWeff ,opt .

Solving the flow field by means of
the vortex blob method as developed by
Chorin and Bernard [148] and used by
Krasny [149, 150], several authors [45,
48, 74, 113] obtained predictions of the
acoustic source power <Psource> in T-
junctions and cross-junctions for
various main flow configurations and
acoustic flow limit cases. 

Assuming a moderate amplitude
behavior (Sec. 8.3), Hofmans [74]
obtained the Strouhal number
dependence of the acoustic source
power <Psource> for all the nine limit
cases of a T-junction with sharp edges.
In these calculations, Hofmans [74]
neglected the effect of vortex shedding
at the downstream edge. Simulations in
which this effect was taken into account
did not indicate this was an important
effect at moderate amplitudes. 

For the (T-a3) limit case in a single
side branch system (Fig. 21-a), at
moderate amplitudes, the pulsation
amplitudes predicted using the results
of the simulations [74] in an energy
balance, agreed within 10% with the
measurements of Bruggeman [58] (Fig.
21-b). For the (T-a1) limit case in a
multiple shallow side branch system, 
the model of Hofmans [74]
implemented in an energy balance
predicts exactly the observed optimal
Strouhal number SrWeff ,opt but
overestimates the pulsation amplitude
by a factor four [118].

The moderate amplitude
assumption used by Hofmans [74]
implies to assume the acoustic source
power <Psource> to be linearly
proportional to the acoustic amplitude

. For high pulsation amplitudes
this is not a correct assumption, so that
when the pulsation amplitude becomes
large, separate calculations should be
carried out for various amplitudes.
Using such simulations in combination

r
u jun'
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with an energy balance, Hofmans [74]

predicted the pulsation amplitude for a

single side branch configuration

terminated by a horn (Fig. 6-b). The

acoustic response of the horn placed at

the downstream open termination

<Prad> was measured by means of a

two microphone method. The visco-

thermal losses <Pv-th> were calculated

following the theory of Kirchhoff [96]

and the acoustic losses due to non-linear

wave steepening <Prad-nl> were

estimated. The predicted pulsation

amplitude agrees within 30% with the

experimental results (Fig. 22). Hofmans

[74] assumes that these discrepancies

are due to the sound absorption by wall
vibrations (Sec. 11). 

Using the same numerical method
as Hofmans [74], Kriesels et al. [48]
obtained a prediction of the effect of the
rounding of the edges on the acoustic
source power <Psource> generated by
vortex shedding in T-junctions and
cross-junctions. In these simulations,
the flow separation point was taken to
be fixed at the end of the upstream main
pipe segment, just before the upstream
edge. The results of the simulations are
shown in Fig. 23 for moderate pulsation
amplitudes. At high pulsation
amplitudes the simulations did not give
reasonable results because the fixed
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Figure 21: Experimental setup used by Bruggeman [58] to measure the pulsation
levels of a single side branch system as function of main flow velocity
U and pressure reflection coefficient Rp (a). Dimensionless pulsation
amplitude |p'max| /(ρ0c0U) at the end of the closed side branch as
function of the main flow Mach number M = U/c0 for various
reflection conditions Rp (b). The pipes have square cross section and
the junction has sharp edges. Experimental results by Bruggeman [58]
(stars) and predictions by means of an energy balance implementing
the numerical results of the vortex blob method of Hofmans [74]
(empty circles).



separation point assumption fails for
rounded edges. The results obtained for
moderate amplitudes agree qualitatively
with the experimental observations of
Dequand et al. [50].

The same vortex blob method as the
one of Hofmans [74] and Kriesels et al.
[48] has been used by Peters and
Bokhorst [113], by means of which they
obtained the prediction of the acoustic
source power <Psource>, at moderate
amplitudes, for the (T-c1) and (T-c2)
limit cases with sharp and rounded
edges (Fig. 24).

9.4.2. Laminar and incompressible
numerical simulations
Using a commercial solver, for the
laminar, incompressible and two-
dimensional Navier-Stokes equations,
Martínez-Lera et al. [151] predicted the
sound sources in sharp edged T-
junctions for the limit cases (T-a1), (T-
a2) and (T-a3). The use of

incompressible simulations limits the
validity of this approach to low
frequencies, but it avoids the
appearance of spurious numerical
resonances when using a limited
numerical domain. This approach
eliminates then the extreme difficulty to
implement non-reflecting boundary
conditions at the limits of the numerical
domain. The Reynolds number based
on the side branch diameter ReDsb =
UDsb/n for which the calculations have
been carried out is low, ReDsb < 3000. As
the simulations are two-dimensional,
the effect of turbulence has been
excluded. The encouraging results of
these simulations, summarized below,
call for further work along this line. 

In a first step, Martínez-Lera et al.
[151] considers the Strouhal
dependence of the source impedance Zs

in the linear (very low amplitude) limit.
The results obtained are very similar to
the experimental results of Graf and
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Figure 22: Dimensionless pulsation amplitude |p'max| /(ρ0c0U) at the end of the
closed side branch of the single side branch system of Fig. 6-b 
(L1 = 0.12m, L2 = 0.44m, L3 = 0.82m, W1 = W2 = W3 = 0.06m, 
rnozzle = 0.03m) with square cross section of the pipes and sharp edges
of the junction, as function of the Strouhal number based on the
effective cavity width SrWeff. Experimental results (solid line) and
predictions by means of an energy balance (circles) implementing the
numerical results of the vortex blob method of Hofmans [74]. The
energy balance is implemented without non-linear losses due to wave
steepening (full circles) and with non-linear losses due to wave
steepening (empty circles).
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Ziada [71, 72] discussed in Sec. 9.1.
Furthermore, these results display a
dependence of the source impedance Zs

on the boundary layer thickness of the
main flow, similar to that observed for
an orifice subjected to grazing flow [88,
90]. An interesting aspect of the method
introduced by Martínez-Lera et al. [151]
is that the full range of acoustic
frequencies is obtained in a single
numerical simulation by means of a
random perturbation of the steady
solution. 

In a second step, Martínez-Lera et

al. [151] calculates the acoustic source

power <Psource> for different pulsation

amplitudes . The simulations

clearly show the saturation effect

predicted by Bruggeman [58] and

observed by Graf and Ziada [71, 72].
The moderate amplitude case with

, for the (T-a3) limit

case, does agree well with the vortex
blob simulations of Hofmans [74]. 

Using a methodology similar to that
introduced by Martínez-Lera et al.
[151], Nakiboglu et al. [152] investigate
the dependence of the optimal Strouhal
number SrWeff,opt on the diameter ratio
Dsb/Dp for the (T-a1) limit case. It
appears that the ratio of boundary layer
thickness to pipe diameter determines
the optimal Strouhal number SrWeff,opt.
Predicted optimal Strouhal numbers
agree well with the available
experimental data [120, 153]. The effect
of boundary layer thickness also agrees
with the observation of Elder et al. [61]
and Golliard [154] on orifices subjected
to grazing turbulent boundary layer
flow. The method used by Nakiboglu et
al. [152] is also successful in predicting
the effect of cavity edge geometry on the
acoustic source power <Psource> [128].
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Figure 23: Dimensionless time-averaged acoustic source power , where Ssb is the cross sectional area
of the side branch, as function of the Strouhal number SrW based on the side branch width Wsb for the (T-a1), (T-
a2), (T-a3) and (C-a1) limit cases with various shapes of the edges. Results of the vortex blob simulation carried
out by Kriesels et al. [48].
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9.4.3. Unsteady, turbulent and
compressible numerical simulations
Numerical simulations of the flow field
in sharp edged cross-junctions have
been carried out by Radavich et al. [127]
by means of an unsteady, turbulent and
compressible solver. The results of these
numerical simulations have been then
processed by means of the analogy of
Howe [41], in order to identify the
regions of sound production. The
results of these simulations, compared
with experiments on a double side
branch systems in cross configuration
(Fig. 8-l), show that the method is
capable of reproducing the physics of
the flow-acoustic coupling and of
predicting the flow conditions when
this coupling occurs. 

Recently, Föller et al. [155]
investigated the aeroacoustic behavior
of T-junctions with flow configuration
(T-a) by means of Large Eddy
Simulations (LES) in combination with
system identification techniques (SI).
The coefficients of reflection and
transmission of plane acoustic waves
and the production and absorption of
acoustic energy due to the interaction of
the unstable shear layer with the
impinging acoustic waves, determined
through the LES/SI methodology,
compares favorably with available
experimental data [140]. 

A drawback of the compressible
simulations is that special care should
be taken in implementing non-
reflecting boundary conditions at the
limits of the numerical domain.    
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Figure 24: Dimensionless time-averaged acoustic source power
, where Ssb is the cross sectional area of the

side branch, as function of the Strouhal number SrW based on the side
branch width Wsb for the (T-c1) and the (T-c2) limit cases with sharp
and rounded edges. Results of the vortex blob simulation carried out
by Peters and Bokhorst [113].
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9.5. DIRECT NUMERICAL
SIMULATIONS (DNS) AND
COMPRESSIBLE EULER
SIMULATIONS
Full numerical models for the
aeroacoustic behavior of pipe systems
are based on the numerical solution of
the flow by means of CFD codes, in
which the solution includes both the
main flow field and the acoustic field.

The aeroacoustic behavior of
cavities subjected to grazing flow have
been recently studied by Gloerfelt et al.
[156] by means of direct numerical
simulations (DNS). Besides the great
advantage of having an accurate
solution of the flow, including the main
flow field and the acoustic field, a clear
disadvantage is that these simulations
are computationally expansive and are
limited to resonators of limited size.
Such simulations have not yet been
achieved for T-junctions or cross-
junctions. However, DNS does not seem
suitable to compute the aeroacoustic
behavior of complex pipe systems where
the sources are compact and the
resonators can typically extend over
several acoustic wavelengths.

Using a dedicated compressible
Euler solver, Dequand et al. [50]
obtained a prediction of the pulsation
behavior of a double side branch system
in cross configuration (Fig. 8-l). In these
numerical simulations, both sharp
edges and chamfered edges have been
considered. An interesting observation,
confirmed by experiments, is that the
chamfered edges behave as the rounded
edges. 

The numerical simulations of
Dequand et al. [50] predict pulsation
amplitudes which are 40% higher than
the amplitudes observed experimentally
in pipes with square cross section. This
is partially expected to be due to the
effect of wall vibrations in experiments.

The modeling of self-sustained
oscillations in T-junctions and cross-
junctions by solving the Euler equations
gives reasonable results because, apart

from the upstream boundary layer, self-
sustained cavity oscillations are
essentially non-viscous phenomena.
Furthermore, the imposed description
of the upstream boundary layer into an
Euler model leads to a satisfactory
description of the phenomenon. A clear
advantage of this kind of simulations is
the reduced computational cost,
compared to a DNS. 

Using another Euler code, Lafon et
al. [7] studied numerically the self-
sustained oscillations in a steam line
with a cavity (isolation valve). In this
work two different computations have
been carried out. In the first one a
uniform mean flow profile was assumed
at the inlet of the numerical domain. In
the second one, a boundary layer
obtained from experimental data was
introduced in the numerical
computation as an upstream boundary
condition. This boundary layer profile
appears to be essential to recover the
experimentally observed coupling
between the shear layer instability and
the acoustic modes of the pipe system.

10. HYDRODYNAMIC
INTERACTION
Hydrodynamic interaction between two
side branches in close proximity has
been observed by Ziada and Bühlmann
[19]. This interaction results into a
dependence of the pulsation amplitude
on the angle between the planes defined
by the main pipe and each side branch
separately. This effect has been observed
to be weak. 

The influence of the distance
between two side branches in tandem
configuration on the pulsation
amplitude, which has been reported in
literature [19], is mainly due to an
increase of radiation losses rather than
to hydrodynamic interaction. In a study
of the interaction between two
Helmholtz resonators, Derks and
Hirschberg [157] observed that the
hydrodynamic interaction becomes



important only for distances lower than
the width of the cavity opening. 

When two closed side branches are
placed in a cross configuration, they can
produce a pulsation level which is
higher than that of a tandem of two
closed side branches placed next to each
other. This is expected to be due to the
reduced sound production of the
downstream side branch in the tandem
configuration, that presents a (T-a2)
limit case (Fig. 23). In a cross
configuration, if the side branch
diameter is comparable to the main pipe
diameter Dsb /Dp = O(1), a significant
hydrodynamic interaction can be
observed between the two shear layers at
the junction between each side branch
and the main pipe [53, 54].

A strong hydrodynamic interaction
has been observed [49] between a bend
with a radius of curvature 3Dp of three
pipe diameters and a closed side branch,
placed just downstream of the bend.
This is due to the formation of a jet in
the bend. This non-uniformity of the
flow influences the effective grazing
flow velocity at the junction between
the main pipe and the closed side
branch for distances up to 10Dp

downstream of the bend. When the
closed side branch is placed in the
direction of the interior of the bend, the
effective grazing flow velocity is
decreased and this results in a reduction
of the optimal Strouhal number
SrWeff,opt, the critical Strouhal number
SrWeff,cri and the pulsation amplitude.
When the closed side branch points
towards the exterior of the bend, the
effective grazing flow velocity is
increased and this results in an increase
of the optimal Strouhal number
SrWeff,opt, the critical Strouhal number
SrWeff,cri and the pulsation amplitude.
The same effect has been observed to
occur for a tandem of two side branches
downstream of a bend [19]. However,
this effect is less important for a system
of two side branches in cross
configuration downstream of a bend
[46, 49]. Coffman and Bernstein [2]

observed strong hydrodynamic
interaction between a row of closed side
branches (standpipes of safety valves)
and an upstream sharp bend.

Our recent experiments on double
side branch systems in tandem and
cross configuration show a strong
reduction of the pulsation amplitude
when these systems are placed a few
pipe diameters (≈3Dp) downstream of a
sharp bend with radius of curvature of
Dp/2. We expect this effect to be similar
to that of an orifice plate, discussed by
Ziada [46] (Sec. 12.3).

11. INFLUENCE OF WALL
VIBRATIONS
Wall vibrations can be significant
amplitude limiting losses. In laboratory
experiments with pipes with rectangular
cross sections one should suspect them
because rectangular cross sections are
easily deformed by pressure
fluctuations. In full scale pipes,
vibrations can also become crucial
because pipe walls become relatively
thin as one increases the pipe diameter.

Large scale experiments carried out
by Gasunie at Westerbork confirm the
significant role of wall vibrations as
amplitude limiting losses [4, 17]. These
experiments have been carried out
measuring the pulsation level in a double
side branch system in tandem
configuration with and without stiffening
elements. By increasing the rigidity of the
setup, the pulsation amplitude was
increased by about 50% (Fig. 25). This
confirms the hypothesis that wall
vibrations have a significant effect. 

An accurate prediction of pulsation
amplitudes in pipe networks where the
wall vibrations are significant requires
an estimation of the transfer of acoustic
power from the acoustic field to the pipe
structure <Pwall>. We propose here a
simple model for the evaluation of the
order of magnitude of these losses. 

At low frequencies the coupling
between the acoustic waves and the pipe
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wall vibrations is limited at
discontinuities. At such points the
acoustic pressure is not uniform and can
drive lateral displacements of the pipe.
We focus on the case of a system
composed by a closed side branch along
an infinitely long free pipe (Fig. 26).

If we assume a quarter wavelength
resonance in the side branch f1 ≈
c0/(4Lsb), the junction between the main
pipe and the side branch is at a pressure
node while the end of the side branch is
at a pressure antinode. The fluctuating
pressure p 'max at the end of the side
branch induces a periodical force Fvib =
Ssbp 'max, which is transmitted by the
side branch walls and pulls the main
pipe periodically. This force is not
compensated by pressure fluctuations at
the junction because there is a pressure
node at this point (Fig. 26). 

The time-averaged acoustic power
transferred from the acoustic field to the
pipe structure <Pwall> is found from:

(20)

where T = 1/f is the period of the
acoustic oscillation, y(x = xsb) is the
lateral displacement of the main pipe at
the side branch position x = xsb. 

The lateral displacement y of an
infinite pipe under the influence of a
point force Fvib applied at x = xsb has
been evaluated by Morse [14].
Introducing the results of this theory in
Eq. (20), the time-averaged acoustic
power transferred to wall vibrations can
be expressed as:

(21)

where E is the Young’s modulus of the
pipe, Ip is the moment of inertia of the
pipe with respect to its neutral axis and
kp is the wave number of the vibrations
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Figure 25: Effect of the wall vibrations on the pulsation level of the double side
branch system in tandem configuration of Westerbork [4, 17]. The
pipes have circular cross section and the junctions have rounded edges
(Fig. 8-a, L2 = L4 = 3.73m, L3 = 7.29m, D1 = D3 = D5 = 0.305m, D2 =
D4 = 0.254m, rup,down = 0.25D2, ρ0 = 54kg/m3 and c0 = 388.5m/s). The
dimensionless pulsation amplitude |p'max| 2/(ρ0c0U), measured at the
closed end of the upstream side branch L2, is presented as function of
the Strouhal number SrWeff for the system without stiffening elements
(circles) and with stiffening elements (squares). Measurements on the
stiffened system could not be carried out below SrWeff ≈ 0.33 for safety
reasons.



along the main pipe. This wave number
is given by:

(22)

where ρp and Sp are respectively the
density and the cross sectional area of
the main pipe. 

In most cases the mass of the side
branch or the mass of a compressor
attached to the side branch will
significantly affect the movement of the
system. This mass mp can be taken into
account in the expression of the
periodical force which is transmitted by
the side branch walls and pulls the main
pipe periodically, so that Fvib = Ssb p'max-
mpd

2y (x = xsb)/dt2. The time-averaged
acoustic power transferred to wall
vibrations, taking into account the
attached mass, is then:

(23)

12. REMEDIAL MEASURES FOR
THE PREVENTION OF THE 
SELF-SUSTAINED OSCILLATIONS
Self-sustained aeroacoustic pulsations
can appear either in new pipe networks

or in existing networks when the
operation conditions are modified. A
typical example is the appearance of
flow induced pulsations as a
consequence of the increase in the
operational flow speed in gas transport
systems. Indeed, severe self-sustained
oscillations are more likely to occur at
high velocities than at low velocities.
Pulsations are expected to occur in any
pipe system containing closed branches
when the flow velocity exceeds a critical
value.

A proper aeroacoustic design of a
pipe network avoids the operational
conditions which may lead to the
occurrence of self-sustained oscillations.
This can be achieved by following the
aeroacoustic design charts, as those
presented by Ziada and Shine [49] and
Bruggeman et al. [56]. These charts are
constructed by using the results
obtained in scale model experiments.
Each scale model (i.e. single closed
branch, double side branch system, …)
is tested to investigate the effects of the
flow and design parameters on the
critical Strouhal number SrWeff ,cri at
which acoustic resonances are initiated.
The use of the design charts is useful to
determine the flow velocity in the
system above which self-sustained
oscillations can be expected. 
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Figure 26: System composed by a closed side branch along an infinitely long free
pipe. In the condition of a quarter wavelength resonance of the side
branch, the fluctuating pressure p'max at the end of the side branch
induces a periodical force Fvib = Ssbp'max, which is transmitted by the
side branch walls and pulls the main pipe periodically.
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Whenever design rules (design
charts) cannot be fulfilled, or in the case
of modification of the operational
conditions, the maximum pulsation
amplitudes should be estimated. If this
amplitude is not acceptable, additional
remedial measures can be implemented
to mitigate the pulsation intensity or
eliminate it altogether. These remedial
measures are: detuning the branches by
making them of different lengths,
inserting anti-vortex elements in the
branch inlet or adding upstream
spoilers in the main pipe. Active control
methods have also been shown to be
effective, however, to date, only under
laboratory conditions. In the following,
these remedial measures are briefly
discussed.

12.1. DETUNING OF THE LENGTH OF
THE CLOSED BRANCHES
If resonance conditions cannot be
avoided for piping systems with closed
branches, the pulsation intensity can be
reduced by detuning the length of the
closed branches, by making one branch
shorter (or longer) than the other.
However, the effect of detuning the
branches is strongly dependent on the
specific geometry of the piping system,
including the diameter ratio Dsb/Dp, the
distance between the closed branches,
the branch arrangement (i.e. whether
the pipe system includes double or
multiple branches and whether they are
in the tandem or the cross
configuration) and the geometry of the
upstream and downstream pipe
segments. 

For double side branch systems
arranged in the tandem [19, 46] and in
the cross configurations [71, 72], the
pulsation amplitude has been observed
to decrease by an order of magnitude
when the lengths of the branches were
detuned by about 10% (Fig. 27-a). In all
these experiments, two absorption
silencers were installed at both ends of
the test section to make the main pipe
acoustically less reactive and, therefore,

reduce the influence of the main pipe on
the acoustical response of the side
branches.

For the case of short side branches
with small diameter ratios Dsb/Dp ,
which are liable to resonance even in the
single configuration, detuning the
branches may be less effective. For
example, Arthurs and Ziada [55]
showed that introducing a relatively
small offset in the length of two
branches generates two distinct tones,
corresponding to the different lengths
of the branches. Although the tone
amplitudes of the detuned branches
were reduced to about 25% of those
observed for tuned branches, this
reduction may not be sufficient,
especially when the higher order
acoustic modes are of concern for short
side branches with small diameter ratio
Dsb/Dp. 

In some cross configurations (Fig.
27-b) with rounded edges and diameter
ratio Dsb/Dp = 1, Tonon et al. [158]
found that even a change of 30% in
length of one of the side branches (L2

was changed while keeping L4 = 13cm)
was not sufficient to reduce by an order
of magnitude the pulsations of the
system. The robustness of these
resonators has been found to be due to
the influence of the main pipe on the
acoustical response of the side branch
system. In these experiments the main
pipe terminations were acoustically
reflecting (open ends). An increase of
the length of the downstream pipe
segment, from L5 = 7cm to L5 = 17cm,
led to a resonator in which the pulsation
amplitude decreased by an order of
magnitude when the branches were
detuned by 10%. It is interesting to note
that in the case of a cross configuration
with L1 = 49cm and L5 = 7cm, detuning
the side branches by 10% resulted in a
20% increase of the pulsation amplitude
(Fig. 27-b). 

For the special case of double side
branches in tandem configuration
separated by a well-tuned main pipe
segment (Fig. 8-a, L2 = L4 ≈ L3/2),



experiments by Bruggeman [58]
indicate that detuning the length of the
side branches becomes effective only for
asymmetry of more than 20% (Fig. 28). 

In the case of multiple side
branches, the effect of detuning is more
difficult to assess. Detuning the length
of all the branches leads in general to a
reduction of the pulsation amplitude.
However, as shown by Tonon et al.
[116], detuning the length of one side
branch in a system composed by six side
branches does not reduce much the
pulsation levels. In 1958 Anderson [159]
predicted that when a crystal is
disordered enough (filled with a high
concentration of defects) electron
diffusion will cease. The phenomenon,
called Anderson localization, explains
the phase transition in a material that
changes from a conductor to an
insulator as disorder is increased and its
electrons transform from diffusive,

delocalized waves into localized, or
trapped, wavepackets [160, 161].
Dépollier et al. [162] observed that
random irregularities in the length of
the side branches of a multiple side
branch systems induce acoustical
Anderson localization, so that the
system still displays trapped modes in
spite of the randomness.

Finally, the length of the side
branches can be designed in order to
eliminate specific resonances [163]. This
leads to the cancellation of the pulsation
for specified conditions. An example of
industrial application is the use of an
additional side branch in safety valves to
detune the resonance [11]. 

12.2. ANTI-VORTEX INSERT
Jungowski and Studzinski [164]
developed and patented several anti-
vortex devices which can be inserted
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Figure 27: Dimensionless pulsation amplitude |p'max| 2,4/(ρ0c0U) at the closed end
of side branch L2 (crosses) and L4 (circles) in asymmetrical double side
branch systems in cross configuration. (a) Side branch system with
circular cross section of the pipes (D1 = D5 = 89mm, D2 = D4 = 51mm)
and sharp edges. The length of one side branch is increased/decreased
in steps while the other branch is shortened/elongated accordingly by
an equal length (L2 + L4 = 1.57m) [71, 72]. (b) Side branch system with
circular cross section of the pipes (D1 = D2 = D4 = D5 = 33.6mm) and
rounded edges ru,l

up,down
= 0.1D2. The length of one side branch L2 is

decreased in steps while the length of the other branch is kept
constant L4 = 13cm. The length of the upstream and downstream
main pipe segments is L1 = 49cm and L5 = 7cm [158]. 
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into the mouth of closed branches. They
consist of a single splitter plate, two
plates in a cross configuration or three
plates in a triangular arrangement.
These inserts represent an attractive
solution because they are very effective
in suppressing the flow induced
pulsations, do not interfere with the
main flow and do not cause substantial
increase in the pressure loss when the
flow is diverted into the branches. The
excellent performance of these inserts in
suppressing flow induced pulsations
appears to be due to several effects.
They can reduce the formation of
vortices inside the branch mouth; they
change the length scale of the separated
shear layer; and they introduce strong
three dimensional effects.

12.3. SPOILER, SHARP TRAILING
EDGE AND ORIFICE PLATE 
Spoilers can be used to reduce self-
sustained oscillations due to flow

separation in T-junction and cross-
junction elements [46, 56]. Besides the
advantage of reducing the pulsation
amplitudes, they have the disadvantage
of inducing flow losses.

The sharp trailing edge (upstream
edge) suggested by Bruggeman et al.
[56] is a type of spoiler that is very
effective and only induces flow losses
when the flow is turning into the side
branch. In principle its effectiveness
depends on the length ls of the edge
formed by a plate compared to the side
branch diameter Dsb. In the experiments
carried out by Bruggeman et al. [56] a
ratio ls/Dsb ≈ 0.2 appeared to be very
effective (Fig. 30). 

An improvement of the spoiler,
observed by Bruggeman et al. [56, 58]
consists in using a zigzag edge rather
than a straight edge normal to the flow.
This reduces the coherence of the vortex
shedding [165]. 

The effect of an upstream orifice
plate on the acoustic resonance of side
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Figure 28: Influence of side branch length on the amplitude of self-sustained
pulsations in the double side branch setup in tandem configuration
of Fig. 8-a. The pipes have circular cross section (D1 = D3 = D5 =
30mm, D2 = D4 = 25mm) and both upstream and downstream edges
of the junctions are rounded rup,down = 0.12D2. The dimensionless
pulsation amplitude |p'max| 2/(1/2ρ0U

2) is measured at the closed end
of the upstream side branch L2, varying the length of one side branch
Li, at fixed length of the other side branch. The solid line represents
the results obtained with L3 = 2L4 = 0.597m and varying the length
L2, while the dashed line represents the results obtained with L3 = 2L2

= 0.597m and varying the length L4.



branches in tandem and cross
configurations was investigated by
Ziada and Bühlmann [19]. When an
orifice plate was positioned 5.5Dsb

upstream of the branches, the pulsation
amplitude was reduced to about 30% of
its original value without the orifice
plate, for both the tandem and the cross
arrangements. In addition, the
pulsations at the second hydrodynamic
mode were eliminated for the tandem
branches. Ziada and Bühlmann [19]
attribute this mitigation effect to
increased turbulence level in the main
pipe, which disturbs the formation of
coherent vortices at the branch mouth.
A sharp bend, with a radius of curvature
of Dp/2, appears to behave in a similar
way as an orifice plate when it is placed
few diameters upstream of a closed
branch system. The drawback of these
countermeasures is the increased
pressure loss due to the restriction of the
flow area. 

12.4. ACTIVE CONTROL
TECHNIQUES
Active control of flow induced pulsations
has received considerable attention over
the past two decades. Ffowcs Williams
and Huang [166], Huang and Weaver
[167] and Welsh et al. [168] used
loudspeakers to counteract the resonant
sound field of different types of
resonators and thereby suppress the
resonant oscillations. Later on, active
suppression of flow induced pulsations
in shallow cavities has been
demonstrated, with a varying degree of
success, by means of perturbing the shear
layer at its separation location with the
aid of oscillating flaps [169, 170], pulsed
mass injection [169], piezoelectric
actuators [171], or synthetic jets [172,
173]. It is also possible to use active
control means to suppress acoustic
resonances of closed branches, as
demonstrated by Ziada [46, 174].

There are three different methods
proposed in the literature to suppress
self-sustained oscillations by active

means. The first involves externally
forcing the shear layer at frequencies
which are substantially different from
that occurring during the resonance
[169, 170]. In this approach, a
continuous high level of power is
needed to force the shear layer
oscillation at a frequency different from
the frequency of its natural instability.
The other two active control methods
are similar in that they employ a
feedback control strategy, but differ in
the type of the used actuator. In the first
feedback control method [46, 166–168,
175], loudspeakers are used to
counteract the acoustic resonance and
thereby reduce the acoustic particle
velocity below the critical level required
to organize and synchronize the shear
layer oscillation. This approach can be
classified as active damping control of
the acoustic mode because the actuator
acts on the resonant acoustic mode
rather than on the shear layer. In the
other feedback control method
[172–174], the shear layer is directly
excited at the separation location to
counteract the feedback generated by
the resonant acoustic mode. This
technique, therefore, can be described as
feedback control of the shear layer
oscillation. Since the actuators in both
feedback control methods are activated
by the system response, the energy
consumption by the actuators decreases
sharply after a short time period which
is needed to suppress the resonance.
This is in contrast with the external
forcing of the shear layer at frequencies
which are substantially different from
that occurring during the resonance,
which necessitates continuous high
power level for the actuator.

13. SCALE MODELS
Scale model setups are convenient
because they are more flexible and less
expansive than real field setups. As the
weight of a setup scales with the third
power of the linear length scale, a
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reduction of the length scale by a factor
10 reduces the cost of experiments by at
least a factor 103.

13.1. SIMILARITY
The key idea of scale modeling is that
the dimensionless amplitude of self-
sustained oscillation is a function of
dimensionless parameters in which
some of these parameters, such as the
Mach number M = U/c0 and the
Reynolds number ReD = UD/n (D is the
pipe diameter and n is the kinematic
viscosity of the gas), are not critical. 

The square of the Mach number M2

indicates the importance of
compressibility on a steady flow. The
Reynolds number ReD indicates the
importance of viscosity on the flow at
the junction between the main pipe and
a closed branch. For typical industrial
gas flows, M ≤ 0.3, and therefore the
flow will not depend significantly on
the Mach number. Furthermore, the
Reynolds number is typically ReD ≥
105, so that the flow is turbulent and
does not depend critically on the
specific value of the Reynolds number. 

The choice of the dimensionless
representation of experimental results is
not unique. For a pipe system with
resonant closed branches of diameter
Dcb and length Lcb, the pressure p'max

measured at an antinode, such as the
closed end, can be written as a function
F of the key dimensionless numbers:
the Strouhal number SrWeff = fWeff /U
based on the effective cavity width Weff

(Sec. 3), the Helmholtz number HeL =
fLcb/c0 based on the closed branch length
Lcb, the product aLcb of the branch
length Lcb and the damping coefficient a
for plane waves, and geometrical
functions, such as the ratio r /Dcb of edge
radius r to closed branch diameter Dcb of
the junction between the closed branch
and the main pipe (Fig. 14) and the ratio
Dcb/Dp between the diameter of the
closed branch Dcb and that of the main
pipe Dp:

(24)

For a laminar acoustic boundary
layer, the damping coefficient a for
plane waves [96] is given by: 

(25)

where g is the Poisson ratio cp/cv of
specific heats at respectively constant
pressure and constant volume, Pr is the
Prandtl number and is
the thickness of the viscous acoustic
boundary layer.

For a resonant closed branch, the
Helmholtz number is HeL = (n + 1/2)/2,
with n = 0, 1, 2, …. In such a case the
dimensionless pressure |p'max|/(ρ0c0U)

is a measure for the ratio of the
amplitude of the acoustical particle
velocity at the junction (sound
source) and the main flow velocity U.
From experiments on recorder flutes
[142, 176] and Helmholtz resonators
[105], it appears that the ratio 
at the sound source (shear layer) is
indeed a very good dimensionless
representation of the pulsation
amplitude.

As explained in Sec. 8.3, when
visco-thermal and radiation losses
become negligible, one reaches a high
amplitude limit which is determined by
geometrical parameters such as r/Dcb

and the flow configuration. The
amplitude is then independent
of αLcb.

A scale model experiment will then
accurately predict pulsations as long as
geometrical details are accurate enough.
Prediction is much easier for trapped
modes than for global modes, because
global modes require the accurate
modeling of the acoustical boundary
conditions of the pipe system (Sec. 1.2).
This is not easy in scale model
experiments.
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In contrast to high amplitudes,
is not predicted by scale model

experiments at low amplitudes. At these
amplitudes, as discussed in Sec. 8.3, the
local hydrodynamic pressure
fluctuations induced by the shear layer
oscillation are proportional to the
acoustical forcing amplitude . The
power balance determining the
pulsation amplitude is extremely
sensitive to minor changes in the
experimental setup, because both the
sound production and the sound
dissipation are quadratic functions of

.
In the following sections we will

discuss the prediction of moderate
amplitude pulsations by means of scale
model experiments and some other
aspects of scale modeling. Before doing
so, we should stress the fact that exact
geometrical scaling, including surface
roughness, is not possible. 

13.2. PREDICTING MODERATE
AMPLITUDE PULSATIONS
At moderate amplitudes one expects
that the sound source is only weakly
dependent on the pulsation amplitude
(Sec. 8.3). In such a case, the pulsation
amplitude can be reasonably well
predicted by using a power balance (Sec.
6) in which the acoustic source power
<Psource> is determined from scale
model experiments while visco-thermal
<Pv-th> and radiation losses <Prad>
are estimated theoretically. This is the
approach used by Bruggeman et al. [56]
and Graf and Ziada [71, 72] (Sec. 9.1).
This procedure will in general provide
an overestimation of the pulsation
amplitude because such a balance does
not take into account wall vibrations,
which provide additional damping and
reduce the pulsation amplitudes.
Furthermore, using for the damping
coefficient a the approximation of
Kirchhoff (Eq. (25)) we ignore the
possibility of a transition from laminar
to turbulent flow in the acoustic
boundary layers in the closed branches.

Such a transition has never been
demonstrated in laboratory experiments
but could occur in industrial pipe
systems when [130].
This transition would imply an increase
in visco-thermal damping.

In contrast with high amplitude
pulsations, it can be convenient to
present scale model results for moderate
amplitudes as the ratio
|p'max|/(1/2ρ0U

2) of pressure fluctuation
amplitude |p'max| and total head
1/2ρ0U

2 of the main flow. This is due to
the fact that at moderate amplitudes the
local hydrodynamic pressure
fluctuations induced by the shear layer
are expected to scale with 1/2ρ0U

2 so
that the acoustic power production
<Psource> scales with 1/2ρ0U

2|p'max|.
As the visco-thermal and radiation
losses scale with |p'max|

2, we expect
|p'max| to be proportional to 1/2ρ0U

2.
A problem with the moderate

amplitude model is actually that it does
predict finite pulsation amplitudes
independently of the magnitude of the
damping. This implies that the power
balance (Sec. 6) will not predict the
sudden disappearance of pulsations
when increasing the damping. This
occurs when the pulsations reach the
low amplitude level at which the source
becomes amplitude dependant.

In scale models, losses can indeed
become so large that self-sustained
pulsations are not observed. In this case,
the scale model results cannot be up-
scaled because the self-sustained
excitation mechanism and the resulting
sound source are not reproduced in the
model. This effect is demonstrated by
the influence of the static pressure on
the pulsation behavior of a single side
branch resonator, observed by
Bruggeman et al. [56, 58]. The measured
dimensionless pressure
|p'max|/(1/2ρ0U

2) is shown as a function
of the Strouhal number SrWeff based on
the effective cavity width, at both
atmospheric pressure and at p0 = 5.2bar
(Fig. 29). For the first hydrodynamic
mode, around SrWeff ≈ 0.4, we do not
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observe a strong effect of the pressure.
The second hydrodynamic mode,
around SrWeff ≈ 0.8 is only observed for
p0 = 5.2bar. A similar strong pressure
dependency is illustrated in Fig. 30 for a
double side branch system in tandem
configuration. This graph presents the
maximum of the dimensionless
pulsation amplitude |p'max|2/(ρ0c0U) as
a function of the static pressure for 1bar
≤ p0 ≤ 15bar. Without spoilers we
observe a strong increase of pulsation
amplitude up to p0 = 5bar, followed by a
saturation. A spoiler placed upstream of
the first side branch significantly
reduces the pulsations at low pressures.
Above a critical pressure, the pulsation
amplitude suddenly rises, indicating a
change in flow around the spoiler,
which is probably related to the increase
in Reynolds number. In this particular
case we expect a transition from a
laminar to a turbulent flow in the
boundary layer around the teeth of the

spoiler. These examples clearly
illustrate that the possibility to vary the
pressure in a scale experiment will very
strongly improve the reliability of the
extrapolation of results to full scale. 

13.3. PREDICTING THE ONSET OF
PULSATIONS
In the previous sections we have been
discussing the prediction of pulsations
based on scale model experiments. We
implicitly considered established
pulsations. In engineering practice one
would actually want to avoid pulsations.
Hence, we seek for a prediction of the
critical Strouhal number SrWeff,cri below
which pulsation occurs. 

The main parameter that influence
the Strouhal number at the onset of
resonance SrWeff,cri is the ratio Dsb/Dp

between the diameter of the closed
branch(es) Dsb and that of the main pipe
Dp [49]. In a double side branch system
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Figure 29: Influence of the static pressure of the gas p0 on the dimensionless
pulsation amplitude |p'max| /(1/2ρ0U

2). Single side branch configuration
with circular cross section of the pipes and sharp edges of the
junction. Solid line p0 = 1bar, dashed line p0 = 5.2bar. 



in tandem configuration, Ziada and
Shine [49] observed an increase of the
critical Strouhal number from SrWeff,cri ≈
0.28 up to SrWeff,cri ≈ 0.45, as the diameter
ratio was increased from Dsb/Dp = 0.135
up to Dsb/Dp = 0.57. Similar dependency
of Strouhal number was found by Elder
et al. [61] and Golliard [154] for grazing
flow along orifices. For the (T-a1) limit
case Nakiboglu et al. [152] predicts the
same increase in Strouhal number with
increasing Dsb/Dp. Although the
radiation and the visco-thermal losses
strongly influence the maximum
pulsation amplitude and the width of the
lock-in range of the resonance, they have
a negligible effect on the critical
Strouhal number SrWeff,cri [49]. 

14. PERSPECTIVES
14.1. SOUND SOURCES
At the present time, we have obtained a
fair qualitative understanding of the
aeroacoustic behavior of pipe systems

with closed side branches, for the case of
side branch diameter close to that of the
main pipe Dsb ≈ Dp. In such a case the
flow at the junction is reasonably well
described by a two-dimensional flow
model. However, there is a need for
more quantitative models, in particular
for the case of junctions with rounded
edges. Also the experimental
information is mainly concerned with a
grazing flow along the mouth of a closed
side branch. There is little information
on the other flow configurations (Fig. 15
and Fig. 16). 

For the case of side branch diameter
much smaller to that of the main pipe
Dsb << Dp we have only a reasonable
understanding of the flow pulsations for
the case of a grazing flow past a closed
side branch. In this case a two-
dimensional model remains reasonable.
The reason why in this configuration
the critical Strouhal number SrWeff,cri

depends on the diameter ratio Dsb/Dp

should be studied more in detail. For
the case of a main flow entering or
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Figure 30: Influence of the static pressure of the gas p0 on the dimensionless
pulsation amplitude |p'max| 2/(ρ0c0U) measured at the closed end of the
upstream side branch L2. Double side branch system in tandem
configuration of Fig. 8-a (L3 = 2L2 = 2L4 = 0.597m). The pipes have
circular cross section (D1 = D3 = D5 = 30mm, D2 = D4 = 25mm). Both
upstream and downstream edges of the junctions are rounded rup,down

= 0.12D2 in the reference configuration (solid line). Several remedial
measures for the prevention of the self-sustained oscillations have
been tested: a spoiler placed 1D2 upstream of the upstream T-
junction (circles), a spoiler placed at the upstream edge of the
upstream T-junction (squares), a spoiler placed at the upstream edge
of the downstream  T-junction (diamonds) and a sharp trailing edge
of the downstream T-junction (triangles).
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leaving a side branch, we do not have
experimental data nor model describing
the aeroacoustic behavior. In particular
for the case of a flow leaving the side
branch, one expects an essentially three-
dimensional behavior due to the
formation of a free jet.

14.2. THEORETICAL PREDICTION OF
GLOBAL BEHAVIOR
The prediction of pulsations in complex
systems has not yet been proven to be
possible. Rules of thumb, such as an
identification of resonators with a
quality factor Q above 10 combined
with a critical Strouhal number SrWeff,cri

seem to predict in many cases pulsations
which are not observed in industrial
practice. As explained in Sec. 11 one
possible reason for the reduction of
pulsations in practice, is the damping
due to wall vibrations. This should be
verified.

Detuning of resonators, by
choosing random lengths of the closed
pipe segments, is certainly useful. It can
however be expensive due to the
increase in complexity of the pipe
system. It does furthermore not give a
guarantee that no acoustic trapped
modes can appear (Sec 12.1). 

At the present time, it is not clear
how a scale model of a limited part of a
pipe system can be used to predict the
pulsation behavior of the whole
(extended) system. In large pipe systems
we can expect that several acoustic
modes can interact. The simple energy
balance based on the assumption that a
single mode is dominant can fail. One
may observe switching from one mode
to another, rather than a stable limit
cycle dominated by a single mode.

In many industrial systems,
compressors are present. These
compressors act as sound sources which
can lock-in with flow induced
pulsations or, on the contrary, impede
these pulsations. This phenomenon has
not been studied yet.

14.3. SCALE MODELS
Scale model experiments remain
essential tools to study the behavior of
complex systems. They can be used in
the design phase in order to predict
pulsations. Later they are most useful in
order to test remedial measures, if flow
induced pulsations appear as
consequence of the modification of the
operating parameters.

The possibility to vary the static
pressure in a scale model is important in
order to extrapolate the scale model
results towards higher Reynolds
numbers, as encountered at full scale. In
general, scale models allow a large
number of useful tests. Results should,
however, always be confirmed by a
number of full scale tests (Sec. 13.2)
because up-scaling remains uncertain.
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NO PLEASING SOME PEOPLE

T-mobile wants to erect a 125-foot cell tower in Bridgewater, NJ. To make it less obtrusive, they offered to
design it as a flagpole. And now residents are complaining about the possibility of noise arising from the
flapping of the flag, and the slapping of its ropes on flagpole.

BYPASS CONSTRUCTION COMPENSATION – SMALL

AROUND 60 people have received compensation after complaining about noise, dust and damage following
the opening of a bypass near their homes. Stoke-on-Trent City Council has paid out the undisclosed sums after
families living near the Tunstall Northern Bypass, in Sandyford, claimed the road has damaged their properties
and created extra noise and dust. A further 25 claims have been assessed and will be paid out in the New Year.
370 more residents are still waiting for decisions on their claims. The council has set aside £180,000 to cover
claims linked to the road which is officially known as James Brindley Way. Claims are being assessed under Part
I of the Land Compensation Act 1973. The act states that compensation can be claimed by people who own
or occupy a property which has been reduced in value by more than £50 by physical factors caused by a new
or altered road which include noise and vibration. Assuming the Council’s provision of £180,000 is realistic, and
assuming all remaining claimants are successful, it appears that the average pay out will be around £400.


