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Abstract
Active control of high-speed and high Reynolds number axisymmetric jets for noise
attenuation and bulk mixing enhancement is a topic of great current interest. An essential
initial step in the implementation of feedback control to achieve the above goals is the
development of a reduced-order model of the unforced jet. A number of modeling
strategies are formulated hereby, and they are evaluated using an existing direct
numerical simulation database of an unforced jet similar to our experimental
configuration. A combination of proper orthogonal decomposition, spectral stochastic
estimation, and Galerkin projection is used to derive the model from empirical data.
Simulations of the reduced-order model are demonstrated to be sufficiently faithful to the
full-order original simulation results to warrant its use for future control design.

1. INTRODUCTION
Jet noise has been a cause for concern since the commercialization of jet engine technology for civil
and military aviation. In recent years, the problem has worsened with increasing number of flights,
growth of residential population around airports, enactment of more stringent regulations, and
deployment of significantly noisier high-performance military jets. Although jet noise is a mature
research area with a history spanning more than five decades, there is still a lack of consensus on the
fundamental mechanisms involved1. However, a common ground among the divergent viewpoints is
the recognition of the importance of the large-scale coherent structures in the jet mixing layer,
especially near the end of the potential core.

Apart from jet noise mitigation, research effort is also focused on enhancing bulk mixing in jets.
Specifically, the hot gases exiting from the jet nozzle undergo bulk mixing with the ambient fluid in a
process that ultimately leads to dissipation. It is of military interest to enhance this mixing so that the
signature of the jet vanishes quickly. The rate of dissipation is clearly correlated with the dynamics of
the large-scale structures in the jet mixing layer2.

From the above discussion, one can conclude that the disparate research fields of noise mitigation
and bulk mixing enhancement in jets have the large-scale structures as a common denominator.
Affecting the turbulence characteristics of flows by manipulating large-scale structures is within the
realm of flow control, which is therefore appropriate for both these applications.

Localized arc filament plasma actuators (LAFPAs) have been developed and continuously improved
for flow control applications at the Gas Dynamics and Turbulence Laboratory at The Ohio State
University3. LAFPAs are capable of generating high-amplitude and high-bandwidth control signals,
which are crucial actuator characteristics for controlling high-speed and high Reynolds number flows.
These actuators provide intense but controlled localized Joule heating to manipulate the large-scale
structures in the mixing layer by exciting the natural instabilities of the jet. Eight of these actuators have
been deployed in a uniform azimuthal array at the periphery of the nozzle exit of Mach 0.9 and 
1.3 axisymmetric jets. The effects of various forcing azimuthal modes and frequencies on the response
of the mixing layer were investigated4,5. At particular forcing Strouhal numbers and azimuthal modes
of operation, the length of the jet potential core was significantly reduced with an increase in the jet
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centerline velocity decay rate beyond the end of potential core. Plasma actuation was also shown to
attenuate far-field noise, with reductions of 0.5 to over 1.0 dB over a range of forcing Strouhal
numbers6,7. The above explorations were performed on unheated jets. Significant improvements in
effectiveness of the LAFPAs have been observed in heated jets for both mixing enhancement8, and
noise attenuation9. Open-loop forcing results demonstrated that the LAFPAs have significant control
authority on high-speed and high Reynolds number jet flows for applications involving both noise
attenuation and bulk-mixing enhancement.

The above investigations also showed that the optimal forcing parameters for a certain application
may exist in a limited region in parameter-space and that the location of this region may be a function
of the operating conditions - e.g. Mach number and temperature ratio. A common technique of
rendering a system’s performance relatively independent of operating conditions is to incorporate
feedback. Closed-loop control of near-wall turbulence for drag-reduction, separation control over high-
lift devices, cylinder wake control, cavity tone suppression, etc., in low-speed and low Reynolds
number flows have seen intense research activity in recent years. In comparison, the development of
feedback control in high-speed and high Reynolds number free shear layers has not received as much
attention. This is due to the lack of suitable actuators till recently, and the increased difficulty in
modeling the highly turbulent flows of practical interest. The present work is the first step in an attempt
to fill this void.

A simple yet robust form of closed-loop control is model-free feedback. Here, the system input-to-
output map is assumed to be static, and the controller is typically set up to vary the input to seek the
maximum or minimum output in real-time. Several such controller algorithms have been successfully
developed and implemented for the present application10. Although the simplicity of model-free
controllers is attractive for flow control, their adaptation is generally slowed by the necessity of
neglecting the system dynamics. Considerable improvements in performance may be realized with a
model-based feedback controller, which is the most common paradigm in feedback control. The
motivation for moving to a model-based approach is three-fold:11−13 (a) to gain a deeper understanding
of the physics involved in the unforced jet, the forced jet, and the plasma actuation itself, (b) to attain
faster convergence to the optimal parameter regime than the case of model-free control, by
incorporating a knowledge of the dynamics of the jet mixing layer in the model, and (c) to achieve
improvements in power consumption.

From the point of view of practical implementation, as well as the feasibility of actual design of the
control law, it is essential that a small set of ODEs be able to approximately describe the dynamical
behavior of the control system. However, the ‘exact’ dynamics of flows are governed by the infinite-
dimensional Navier-Stokes equation. Hence, any model-based flow control strategy must necessarily
involve the development of a reduced-order model (ROM) of the flow. A number of methods have been
employed to develop ROMs of flows of practical interest - they lend themselves to the following broad
categorization.

1. Phenomenological models of flows are obtained by invoking intuitive arguments about the
essential physics of the flow. Flows dominated by oscillations have been modeled in this
manner in the past13−16. Unfortunately, the unforced high Reynolds number jet mixing layer
is relatively disorganized and this makes the task of phenomenological modeling quite
difficult.

2. Black-box modeling involves starting with an assumed structure of the ROM (number of
dynamic states, degree of nonlinearity, form of the forcing term, etc.) before performing well-
designed experiments or simulations to identify the dynamical relation between the system
input and output. Several implementations have been reported in the recent flow control
literature17–20. This modeling approach does not incorporate much physical information about
the flow, but may be the most viable option in particularly complex applications.

3. The Galerkin procedure involves two steps to arrive at the ROM21. In the first step, the
kinematics of the flow are assumed to reside on a low-dimensional manifold, so that the infinite
dimensional flow variables are represented by an expansion on a finite number of modes. This
expansion is usually linear, but nonlinear expansions have been found to yield greater accuracy
for certain flows in bounded domains22,23. In the next step, the dynamics of these modes are also
assumed to reside on the same low-dimensional manifold, and this is enforced by the Galerkin
projection (GP) of the Navier-Stokes equations onto this manifold. Depending on the origin of
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the expansion modes, Galerkin models have been categorized as mathematical, physical, or
empirical15. Empirical Galerkin models, as the name suggests, derive their modes from
experimental data or numerical simulations. They have been generally found to be the most
accurate while employing the least number of modes15.

The most common technique of deriving modes from empirical data is the Proper Orthogonal
Decomposition (POD)21,24. Its popularity stems from the fact that it is a linear procedure, and it
objectively educes an orthogonal set of basis functions that optimally converges in the sense of a suitably-
defined L2 norm of the projection error. The eduction of POD bases for axisymmetric jets was
pioneered by Glauser et al.25 with several important contributions in recent years26−30.

Based on the above discussion of the available options for deriving ROMs, we decided to use POD
and empirical GP for our feedback control application. POD-GP has been used for studying the
dynamics of flows over the past 20 years31–36. In particular, in our lab, we have implemented a model-
based feedback controller for reducing cavity tones using this modeling strategy12,37,38.

An essential and non-trivial initial step in the design of a model-based feedback controller is the
modeling of the unforced flow. The POD-GP procedure can result in ROMs with widely differing
fidelity depending on the simplifying assumptions that are made. The choices made at this point will
affect the later development of the actuated model. The present article delves into the details of
modeling the pertinent near-field mixing layer of the unforced axisymmetric jet. The incorporation of
the effect of actuation is deferred to a subsequent work.

A very useful (and, in fact, indispensable) tool for evaluating the various modeling strategies is a
time-and spatially-resolved 3D volumetric database of the axisymmetric jet. Freund39 has performed a
direct numerical simulation (DNS) of an unforced Mach 0.9 axisymmetric jet with Reynolds number
based on jet diameter (Re) of 3600. In spite of its low Reynolds number, most of its general
characteristics, and especially the nature of its large-scale structures, were found to be similar to those
of a Mach 1.3 jet with an Re of 1.06 × 106 in an experiment40. Thus, in this article, we employed this
DNS database to assess various strategies for developing an ROM of this unforced axisymmetric jet.
However, one should keep in mind that the ROM would be ultimately derived from experiments on the
high Reynolds number jet, in unforced as well as forced operating conditions. This would be made
explicit, for instance, when reference is made to the (virtual) particle image velocimetry (PIV)
performed on the DNS database.

In Section 2, we provide a detailed discussion of the proposed strategy for building the ROM, while
leaving various options open for later assessment. In Section 3, these strategies are applied to the DNS
database, and the results of simulation of the various ROMs are employed to determine the most
suitable modeling strategy. Concluding remarks are offered in Section 4.

2. STEPS IN REDUCED-ORDER MODEL DEVELOPMENT
Although experimental acquisition of velocity information over extended spatial domains has become
quite common, it is still quite infeasible to simultaneously obtain density, pressure, and/or temperature
fields in the same domain. Thus one is forced to make an incompressibility assumption in
approximating the Navier-Stokes equations. This may be justified since a control-oriented model only
needs to be good enough for representing the short-time-horizon dynamical relation between control
inputs and sensor outputs41.

The flow domain of interest for ROM development is the mixing layer in the vicinity of the end
of the potential core, as shown in Figure l(a). In the axisymmetric jet, the azimuthal direction is
homogenous and the radial direction is inhomogeneous. In the past, the axial direction was assumed
to be homogenous, and Taylor’s hypothesis was used to convert a time-resolved velocity
measurement to an axially-resolved velocity database32. However, our preliminary experience with
the DNS database indicated that such an assumption may not be correct for the current modeling
purpose. Then, the empirical database for the ROM should consist of the 3-component 2-point
velocity cross-correlation tensor with all possible pairs of axial and radial locations, and all possible
azimuthal separations over the indicated 3D region. The acquisition of such a database is quite
complicated. Another option is to collect snapshots of the 3-component velocity field over the 3D
region. Although this information is not directly accessible in experiments, Tinney et al.29,30

presented an approximate technique for this purpose using spectral linear stochastic estimation
(SLSE), and we would adopt this in our work.
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Figure 1. Schematic of axisymmetric jet. (a) Model domain. (b) Numerical experimental setup.

In the following sub-sections, we detail the modeling procedure. One of our contributions is to
rigorously prove and enforce the symmetries of the axisymmetric flow. These symmetries (a) augment
the database collected from experiments, (b) make computations easier, and (c) model the flow more
accurately42.

2.1. Normalizations
Let the jet exit velocity and nozzle exit diameter be Ujet and D, respectively. All velocities and linear
coordinates are implicitly normalized by these respective quantities. Time is normalized by the flow
time scale t+ := D/Ujet. Pressure is normalized by rjetU

2
jet, where rjet is the ambient fluid density. With

the kinematic viscosity of the ambient fluid denoted by njet, the pertinent Reynolds number is Re :=
UjetD/vjet.

2.2. 1D Proper Orthogonal Decomposition on Cross-Stream Slices
The first step is the eduction of a low-dimensional basis for the velocity field over cross-stream slices of
the axisymmetric jet mixing layer29 as shown in Figure l(b). The spatial domain is represented in
cylindrical coordinates (x, r, q ), with the axial coordinate serving to parameterize the cross-stream slice
location. The velocity vector is V : [0, R] × T × R × Xu → R3, V : (r, q, t; x) (Vx, Vr, Vq)

T. Here, 
R is the radial extent of the measurement domain, T is the circle group, R is the real line, and Xu is the
set of axial locations of the cross-stream slices. The statistical stationarity and axisymmetry of the jet

are used to define the mean velocity field as Henceforth, unless

otherwise mentioned, the expectation operator E(.) will signify the ensemble-average over all
realizations indexed by t. Intuitively, , and this is enforced explicitly in the implementation. The

fluctuating velocity vector is defined as v(r, q, t; x):= V(r, q, t; x) − (r; x), with the three components
being ux, ur, and uq, respectively. 

It is well-established24’43 that in the presence of a homogeneous and/or periodic direction in a flow, its POD
devolves into the Fourier decomposition along that direction. The azimuthal Fourier transform of a function

f (q ) will be denoted by Here m is the azimuthal mode,

and . The inverse Fourier transform will be denoted by ; 

With this, v is transformed as . Since v is real, v̂ is Hermitian in m.

The axisymmetry of the jet can be used to infer a symmetry condition. Consider an actual realization
of v shown in Figure 2(a). The contour-map indicates the axial component, and the vector field is in the
cross-stream plane. If enough realizations are collected in a perfectly axisymmetric jet, one should also
expect to capture the simulated co-velocity field v_ shown in Figure 2(b)28. Of course, in an actual
experiment, one cannot expect to collect both realizations. However, the collected database of

v v( , , ; ) ˆ ( , ; , )r t x r t x mmθ F →

f f m m

m
( ) ˆ( ) .
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Figure 2. Enforcing axisymmetry. (a) Actual velocity field realization. (b) Corresponding co-velocity field.

realizations can be extended by appending the co-velocity field of each physical velocity field. To be
precise, the two fields are related as follows:

(1)

The two-point cross-correlation tensor is central to the POD; for all i, j ∈ {x, r, q}, it is defined as

(2)

where we have used the azimuthal homogeneity of the axisymmetric jet. The relations in eqn (1) can
be invoked to prove the following

(3a)

(3b)

Such properties have indeed been verified in experiments27–29.
The azimuthal Fourier transform of ∏ij is defined in the usual manner:

Since ∏ij is real, is Hermitian in m. The following can be deduced from eqn (3):

(4a)

(4b)

Here R(.) and I(.) respectively denote the real and imaginary parts of a complex quantity.
In practice, the following relation is used to compute ∏̂ 

ij
44

(5)

The asterisk denotes the adjoint operation, which reduces to the complex-conjugate transpose for
our purpose. Subsequently, eqn (4) prompts the neglect of the real parts of the azimuthal shear
stresses and the imaginary parts of the remaining correlation coefficients. In the past, analogous
symmetries have been enforced for the kernel of a POD performed on a fully-developed channel
flow45.

Let v̂(1) and v̂(2) denote two fluctuating fields as above. The vector inner-product is defined as

(6)ˆ , ˆ : ˆ ˆ .( ) ( ) ( )* ( )v v v v1 2 2 1=
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Then, for each (x, m) ∈ Xu × (−∞,∞), the vector ID slice POD problem becomes the following integral
eigenvalue problem26–29

(7)

The quantities Ξ(n)(x,m) and are respectively the eigenvalue and the ith component of the
eigenfunction for the nth POD mode. Both are parameterized by the axial location of the cross-stream
slice, and the azimuthal mode; the latter is also a function of the radial coordinate. The vectorial form

of the eigenfunction is 

In the scalar POD, each velocity component is decomposed individually. The scalar inner product is
defined for the ith component of the velocity field as

(8)

Then, for each (x, m) ∈ Xu × (−∞, ∞), the scalar ID slice-POD problem is

(9)

Here the eigenfunctions ĵ are akin to those for the vector POD, but one obtains individual eigenvalues 
xi for the different components of velocity indexed by i. The vectorial form of the eigenfunction is 

. We will compare the results from the vector and scalar POD later; the reader
is referred to other works that provide a more general discussion28,29,36.

The salient properties of the solutions of the POD problem have been discussed in depth
elsewhere21,36. Here, the axisymmetry of the flow, captured in eqn (4), is invoked to note that the
eigenfunctions of the vector 1D slice POD can always be normalized such that the following hold

(10)

The solutions for the scalar POD problem satisfy identical relations. The kernels ∏̂ 
ij of the POD

problems are Hermitian in m; thus the eigensolutions are also Hermitian in m. Then, one can solve the
eigenvalue problem for m ≥ 0 only, and the results for m < 0 can be recovered from the Hermitian
property. The 1D POD problem is solved in the discrete radial domain. Typically the number of radial
grid points are far fewer than the number of snapshots so that the original (or direct) POD method is
employed24.

The properties of the POD allow one to exactly reconstruct any of the velocity field realizations that
formed the original database, using a linear combination of all the eigenfunctions. However, it is typical
to assume that any arbitrary velocity field can be approximately reconstructed using the first few (say,
Nn,1) eigenfunctions only21,24. For the vector 1D slice POD, we can write

(11)

with b̂ (n) as the nth modal coefficient, which resolves the time information of the velocity field.
Analogously, for each component i ∈ {x, r, q}, the scalar 1D slice POD allows the approximation

(12)

where, ĝi
(n) is the nth modal coefficient for the ith component of velocity. Since all of v̂, ff̂ (n), and ĵi

(n)

are Hermitian in m, so are the modal coefficients b̂(n) and ĝi
(n), for all n, and for all i ∈ {x, r, q}.

2.3. 3D Velocity Field Reconstruction using Spectral Linear Stochastic Estimation
Stochastic estimation was originally introduced to educe coherent structures in turbulent flows46.
Subsequently, it has also been employed for estimating velocity fields using minimal measurements
and a knowledge of the spatial correlations in the flow47. The original technique estimated the
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velocity directly47. In the classical version of the complementary technique, the estimated velocity
field was projected onto the POD basis, and the projected field was deemed the final estimated
field48. Subsequently, the complementary technique was modified in two important ways49,50. The
POD modal coefficients of the velocity field were estimated directly so that the estimated velocity
field was reconstructed by weighting the POD basis by these coefficients. Additionally, a different
physical quantity (eg. pressure, surface shear stress, etc.) was used as the unconditional variable. The
concept was later extended by decomposing both the unconditional and conditional fields into their
respective low-dimensional modes, be they Fourier or POD, before linking the corresponding modal
coefficients through stochastic estimation30. The successive modifications were implemented to take
advantage of the increased correlations between the low-dimensional quantities, thereby reducing
computations without sacrificing (or, in some cases, actually improving) the accuracy of
reconstruction. The spectral variant, SLSE, was implemented for statistically stationary flows, where
the correlation was computed in the temporal Fourier domain 30,51,52. This was shown to be especially
useful whenever the spectral features of the conditional and unconditional variables were disparate,
and/or significant time delays existed between them52. Both these effects are manifest in the present
application.

In the modified complementary SLSE formulated by Tinney et al.30, time-resolved pressure
measurements in the irrotational near-field of the axisymmetric jet were used as the unconditional
variable to simultaneously reconstruct the conditional velocity field on several cross-stream slices
through the jet mixing layer. It will soon be evident that this necessitates the computation of the cross-
spectral tensor between pressure and velocity. This was addressed by capturing stereo-PIV snapshots
separately on each pertinent cross-stream slice, but at known instants of the pressure-record30. The
original work relied on a single azimuthal array of pressure sensors, but the reconstruction can be made
more accurate by adding an axial linear array of pressure sensors, at little extra cost. Figure l(b) shows
an even more general arrangement of pressure sensors that is used to formulate the problem. Consider
Na

p azimuthal arrays of pressure transducers arranged at different axial locations x ∈ Xa
p. In addition,

suppose that there are Nl
p individual pressure sensors at different axial locations x ∈ X l

p. that do not
belong to any azimuthal array. Although the development does not need the individual sensors to form
a linear array, they would be assumed to be in a straight line at q = 0 for notational convenience.
Without loss of generality, it is also assumed that all pressure sensors are located on the surface of a
virtual cone co-axial with the jet, so that their radial locations are a function of their axial locations.

The individual pressure signals from the sensors in the azimuthal arrays are denoted as Pa : T × R ×
X a

p →R, Pa : (q, t; x) R. As before, the mean and fluctuating pressure are defined as 

and respectively. Similarly, the pressure

signals on the linear array are denoted as R. The corresponding time-mean

and fluctuating quantities are respectively and The

azimuthal Fourier transform of pa is defined in the usual manner: 

The formulation of the SLSE is quite similar for the three cases that are studied here (all are performed
in the azimuthal Fourier domain): (a) the original technique for estimating the velocity field v̂ (r, t; x,
m), (b) the complementary technique for estimating the vector POD modal coefficients 
b̂ (n)(t; x, m), and (c) the complementary technique for estimating the scalar POD modal coefficients 
ĝi

(n)(t; x, m), ∀i ∈ {x, r, q}. We will show the equations for the last case, as those for the other two cases
can be readily deduced from it.

The temporal finite Fourier transforms of the pressure signals are defined as44:

(13)

where f is the temporal frequency, and t0 locates the mid-point of a time-series of length T. Let the temporal
Fourier transform of ĝi

(n)(t; x′, m) be denoted as ĝ̌ i
(n)(x′, m, f ), where x′ ∈ Xυ is the location of the cross-

stream slice. Generalizing the formulation of Tinney et al.30, and denoting the estimate of any quantity
w by w~ the modal coefficient ĝ̌i
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(14)

Einstein’s summing convention should not be followed for m and f 30. To minimize the estimation

error for each individual x′, i, n, m, and f , the standard least-squares

technique yields the following set of Na
p + Nl

p coupled linear equations for the estimation coefficients L:

(15)

With

with

Here, the cross-spectral tensors of pressure are defined as

(16a)

(16b)

(16c)

The expectation operator is the un-weighted average over different independent time records of length T.
With the experimental realities in mind, the cross-spectral tensors between pressure and the modal
coefficients are computed in a different, but equivalent, manner44:

(17a)

(17b)

Here, t indicates the instant in the pressure record when the snapshot of the velocity field is captured on
the cross-stream slice. Several such pairs of pressure records and velocity snapshots must be captured
for convergence of the statistics; the expectation operator signifies an ensemble-average over all such
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pairs. The axisymmetry of the flow can be used to prove that cross-spectral tensors and the estimation
coefficients are Hermitian functions of the temporal frequency f; these were enforced in our work.

Once is estimated, inverse Fourier transform yields the estimate of This
estimate is most accurate for t = t0, the center of the original pressure time-series. So, it is best to perform
the steps in eqns (13) and (14), and the inverse transform, separately for each time instant t0 at which the
velocity field is desired. Since the SLSE is intended for off-line implementation, accuracy considerations
can be allowed to trump computational efficiency. The actual velocity field is reconstructed using eqn (12).

For Tinney et al.30, experimental expediency dictated that the cross-stream PIV slices could not be
taken on an axial grid that was fine enough for the reliable computation of the required spatial
derivatives. Cubic spline interpolation was used to solve this problem53,54. The same method is adopted
here to render the database amenable for the subsequent GP. Along with the fluctuating velocity field,
the GP also requires the spatially-resolved mean velocity field. This can be reconstructed by again using
cubic spline interpolation to estimate the mean velocity on a grid of desired axial resolution from the
measured mean velocities on the original coarse grid of cross-stream slices.

2.4. 2D Proper Orthogonal Decomposition on 3D Velocity Database
We have detailed various methods for obtaining a database consisting of snapshots of the 3 components
of velocity on a 3D cylindrical region of the form shown in Figure l(a). In the current work, one other
possibility is to use the DNS database directly. To unify the notation, the spatially-resolved velocity field
is now denoted by U: [X1, X2] × [0, R] × T × R → R3, U : (x, r, q, t) (Ux, Ur, Uq)

T. Here, X1 and X2
denote the upstream and downstream bounds of the axial domain; note that [X1, X2] should be covered by
Xυ for the reconstructed database detailed above. As before, the mean and fluctuating velocity fields

are defined as and u(x, r, q, t) := U(x, r, q, t) respectively.

The components of the fluctuating field are respectively ux, ur, and uq . The azimuthal Fourier transform

of the fluctuating velocity field is defined as 

The formulation of the 2D POD is very similar to the ID slice POD; the only difference is that the
eigenfunctions cease to be parameterized by the axial location of the cross-stream slice, and instead
become continuous functions of the axial coordinate. The basic symmetry condition established in eqn
(1) still holds with the obvious modification, so that all the symmetries carry over. Therefore, we give
a minimal description of the 2D POD, mainly to establish notation for later reference. Only the vector
POD is pursued here since it produces superior results to the scalar version in the subsequent GP36.

Let (1) and (2) denote two fluctuating fields as above. The vector inner-product is defined as

(18)

Then, for each m , the vector 2D POD becomes the following integral eigenvalue problem

(19)

The quantities (x, r; m,) are respectively the eigenvalue and the ith component of the
eigenfunction for the nth POD mode. Both are parameterized by the azimuthal mode; the latter is also
a function of the axial and radial coordinates. The vectorial form of the eigenfunction is

As an aside, the POD problem can be solved by the original method24 or the snapshot method42

depending on how the total number of points on the 2D grid compares to the number of realizations
needed for statistical convergence. In the snapshot method, one does not explicitly use the kernel shown
in eqn (19), so that its symmetries cannot be applied directly. Instead, an option is to extend the
database of realizations with the co-velocity field as described before (use eqn (1), mutatis mutandis)42.
Of course, this doubles the number of realizations, thereby making the snapshot method less attractive.
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Once the eigenfunctions are obtained, a low-dimensional reconstruction of the velocity field (in the
Fourier azimuthal domain) can be obtained using only the first Nn,2 eigenfunctions:

(20)

As for the ID POD, since and are Hermitian in m, so are the modal coefficients α̂ . The
subsequent GP models the dynamics of α̂ , and their Hermitian nature means that the model only
need consider the non-negative azimuthal modes. This reduces the size of the ROM by almost 
a half.

2.5. Galerkin Projection
The non-dimensionalized incompressible Navier-Stokes equations in cylindrical coordinates are55

(21)

Here P is the static pressure field, δ is the Kronecker delta, and ∇ and ∇2 are respectively the gradient
and Laplacian operators. In applying the Reynolds decomposition to the Navier-Stokes equations, a
dichotomy is noticed in the ROM literature regarding the appropriate mean field representation. One
group has used a steady mean field derived from empirical data by ensemble-averaging as well as
averaging over any homogenous direction, if applicable35,38,56–58. Another group has used simplifying
assumptions to adopt a slowly time-varying mean field averaged over all homogenous directions,
followed by its representation in terms of the Reynolds stresses15,16,31–33. This is said to ensure bounded
state trajectories by providing some feedback from the Reynolds stresses to the turbulence production
mechanism (the gradient of the mean-field). For the axisymmetric jet, however, the underlying
assumptions were not borne out by our investigations using the DNS database, thereby prompting the
adoption of a steady empirical mean field.

Applying the ensemble- and azimuthal-averaging to eqn (21) and subtracting the result from the
original, one obtains the dynamics of the velocity fluctuations as

(22)

Here, p is the pressure fluctuation, with azimuthal Fourier transform defined as 

.

The subsequent steps in the GP are standard: application of an azimuthal Fourier transform to the

equations, followed by a projection on to the POD basis functions Assume that the
velocity field is expanded using the first Nn,2 POD modes, and azimuthal modes m = 0 to m = Nm. Then
the resulting set of ODEs can be written as
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(23)

The expressions for the coefficients appear in the Appendix.
For the assumed incompressible flow under consideration, the pressure term reduces to a surface

integral over the boundary of the POD domain35. Moreover, owing to the vanishing of velocity
fluctuations at the outer radius of the POD domain, the eigenfunctions themselves vanish at this
boundary too. Therefore, one obtains the form shown above wherein the pressure needs to be evaluated
at the inflow and outflow cross-stream slices only. Even in this simplified form, the term cannot 
be retained in the ROM since the requisite pressure information cannot be obtained from experiments.
In previous applications to similarly unbounded flows35,57, this term has been assumed to vanish
altogether. Using the DNS database, we verified that indeed no appreciable inaccuracy is introduced by
neglecting the pressure term, and this neglect would be implicit for the simulation results presented
subsequently. We note here that Noack et al.59 showed that for cylinder wake flow simulations, it is
most appropriate to retain the pressure term, and to solve for it in parallel using the pressure Poisson
equation.
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The eigenfunction-basis of the velocity is truncated in both the Fourier space as well as the POD
space, keeping only the most energetic modes. The neglected modes have low energy and typically
correspond to the smaller-scales of turbulence; this makes them important for dissipation. Since
neglecting these modes generally has the effect of making the ROM overly energetic, it is common to
model the effect of these neglected modes using an eddy-viscosity representation. Some researchers
have incorporated a global eddy viscosity and treated it as a bifurcation parameter31–33. Others have
computed empirical values of modal eddy viscosities by balancing energy or momentum38,60,61. Both
these strategies amount in adding linear terms to the ROM, but the latter strategy gives more flexibility.
Here, we follow the empirical energy balance route to modeling the eddy viscosity60, because it was
effective in the cavity tone control model developed in our laboratory38. In particular, the non-negative
modal eddy Reynolds number Re(n)

T (m) appearing in eqn (23) is computed by requiring that the modal
kinetic energy be steady in the ensemble-average over the database of realizations. Neglecting the
pressure term, this leads to60

(24)
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Figure 3. Contour plot of mean axial velocity from the DNS database.



3. RESULTS AND DISCUSSION
3.1. Preliminaries
The details of the direct numerical simulation database are available in Freund39; here we only
highlight the most pertinent aspects. The cylindrical computational grid has 80 uniformly spaced
azimuthal grid-points. For ease of implementation, the originally non-uniform rectangular x – r grid
is linearly interpolated hereby to a uniform square grid with a spacing of 0.0625 (in jet diameter
coordinates). All the results were also assessed in the original grid, and no material difference was
observed. The data is saved at 2316 consecutive time instants with uniform separation of 0.071 (in t+

coordinates).
The ROM is developed for controlling the large-scale structures in the turbulent jet mixing layer

near the end of the potential core. If the model domain is too short to accommodate the typical large-
scale structures in their entirety, then their dynamics cannot be modeled correctly35. The constraint at
the other extreme is the necessity for the near-field pressure at the upstream location to be well-
correlated to the velocity field on the cross-stream slice at the most downstream location for the success
of the SLSE procedure. The low-Re simulated jet remains laminar for a significant length39, whereas
the high-Re experimental jet is turbulent at its exit8. For the present exercise to be of use in designing
later experiments, the modeling should be performed using data from a domain of the simulated jet
mixing layer that is turbulent.

A contour plot of the mean axial velocity is shown in Figure 3. The transition from laminar to turbulent
flow is difficult to pin-point; however, a difference in the jet-spreading behavior is noted at x ∼∼ 5. Practical
considerations would prevent the placement of pressure sensors too far downstream in actual applications;
this constrains their feasible axial locations. The need to obtain a hydrodynamic signature dictates the
radial location of the sensors30,62,63. Five conceptual sensors are placed in a uniform linear array from x =
5 to 6, making an angle of 5.6° with the jet axis, with the most upstream sensor located at r = 1.29 (see
Figure 3). Alternatively, any or all of them may be replaced by azimuthal arrays of 80 sensors (of the form
shown in Figure l(b)), corresponding to the DNS grid. Following the discussion above, conceptual cross-
stream slices of the flow were chosen in the range x = 7 to 10 at intervals of 0.25 to perform the ID slice-
POD (see Figure 3). The radial extent of the slice-POD domain was R = 2.

3.2. Results of 3D Velocity Field Reconstruction using SLSE
The application of ID slice-POD to the axisymmetric jet mixing layer is standard, and the results have
been published in Tinney et al.29. We proceed to a discussion of the accuracy of reconstruction of the
3D velocity field database using SLSE. The details of the implementation of the SLSE, as well as the
qualitative nature of the results follow Tinney et al. 30. We only mention that the finite time Fourier
transforms were implemented with T = 28.4t+, and overlaps of 21.3t+. The cubic spline interpolation is
kept out of this exercise for the time-being, to focus on the SLSE alone.

Using any of the methods described previously, one obtains the reconstructed fluctuating velocity

field denoted by ṽ(r, q, t; x). The actual fluctuating velocity field v(r, q, t; x) at these axial locations

is also known for the same time instant t. Thus, with the underlying inner product defined as 

the following reconstruction error metric is proposed:

(25)

The relevant statistics were verified to have converged. Then, the least-squares framework and the
orthonormality of the eigenfunction basis afford erecon to be computed directly from the cross-spectral
tensors introduced in Section 2.3. For example, if the complementary SLSE is applied to reconstruct the
scalar POD modal coefficients in the ranges m ∈ [–Nmr, Nmr] and n ∈ [1, Nn,1] respectively, then we have

.
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In Figure 4(a), all possible pressure sensing configurations are compared using the above metric. In

our assay, the sets and are mutually exclusive and 0 ; thus only the depicted

combinations of and can be evaluated. For each combination, we plot 

computed from eqn (26) with Nmr = 9 and Nn,1 = 9. Although the errors are quite large in general, it

will be shown that the reconstructed database is still useful for the subsequent 2D POD. One observes

that beyond the first azimuthal ring array, each additional linear array location provides almost the same

informa-tion as an additional azimuthal ring array. Keeping in mind the cost of implementation, we

choose the combination with = 1 and = 4. Approximately the same erecon (= 0.72) was

obtained for all permutations in this case. Henceforth we will exclusively employ the configuration

with = {5.5} and = {5, 5.25, 5.75, 6}. It is to be noted that this results in a significant

improvement over the single azimuthal ring configuration used by Tinney et al.30. Figure 4(b)

demonstrates the convergence of the error in the Nmr – Nn,1 space for the chosen configuration.

We have described the application of SLSE to estimate the scalar POD modal coefficients above.

Apart from this, SLSE was also applied to the velocity field directly, as well as to the vector POD modal

coefficients. The respective values of erecon for the chosen configuration were 0.69 and 0.75. Such a

performance hierarchy is anticipated since the information provided by the pressure sensors are

aggregated to differing degrees in the three schemes. The application of SLSE to the scalar POD modal

coefficients, in concert with the cubic spline interpolation, will be used to reconstruct a database of 3D

snapshots, and this will be referred to as the “chosen” reconstructed database.
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Figure 5. 2D POD eigenvalue spectra for (a) the original DNS database, and (b) the reconstructed database
chosen in Section 3.2.

Figure 4. The reconstruction errors for various parameter choices in stochastic estimation.
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Figure 7. 2D POD eigenfunctions educed from the reconstructed database chosen in Section 3.2.

Figure 6. 2D POD eigenfunctions educed from the original DNS database.

3.3. Results of 2D POD on the 3D Velocity Database
The eigenvalues obtained from the application of the 2D vector POD are presented in Figure 5 as a
percentage of the respective total energy captured, as well in terms of their absolute values. For m ≠ 0,
the eigenvalues are doubled to account for the negative azimuthal modes too. Since all the energy is not
captured in the reconstructed database, the actual percentages are unimportant, and one should focus on
the relative energies within each sub-figure. With this caveat, it is apparent that the reconstruction shows
similar trends, although m = 0 and 4 are over-predicted. The near equality of the 1st and 2nd POD modes
for m = 1 in both cases is indicative of an approximate periodic behavior in this mode21.

Figures 6 and 7 present some representative eigenfunctions corresponding to the two databases
depicted in Figure 5. Following the 2D POD counterpart of eqn (10), only the non-trivial components
of the first POD eigenfunctions are shown for azimuthal modes 0 through 3. In spite of the
reconstruction errors seen in Figure 4, we note the similarity of the POD eigenfunctions from the
original DNS database and the chosen SLSE reconstruction in Figures 6 and 7, respectively. For m = 1,
analysis of Figure 5 indicated a dominant periodic behavior, and the eigenfunctions noticed in the
corresponding subparts of Figures 6 and 7 are approximate phase-shifted counterparts of each other.
One concludes that while the reconstructed structures are weaker compared to the original, their shapes
are captured well by SLSE. Discrepancies in the POD bases would not invalidate the subsequent GP;
they would only result in a sub-optimal basis for the expansion, thereby introducing more inaccuracy
for the same dimension of the ROM.

If a flow is incompressible, then each of its velocity realizations are solenoidal. The vector POD
eigenfunctions for such a flow, being linear combinations of these realizations36, inherit the solenoidal



property also. Thus one way of assessing the incompressibility assumption for the present flow is to

determine how close is to being solenoidal. The following metric

(27)

is evaluated for the eigenfunctions obtained from the original DNS database with n [1,10] and m 
[0,10]. The maximum value of is found to be 0.7%, thereby lending support to the incompressibility
assumption.

3.4. Results of Simulation of the ROM Obtained by Galerkin Projection
The first derivatives of the eigenfunctions and mean velocities appearing in the coefficients of the
ROMs (see Appendix) were computed using 6th-order accurate finite differences. The ROMs were
simulated using MATLAB’s ode45, which is a Runge-Kutta (4, 5) ODE solver with automatic step-size
selection. Subsequently, the simulation results were linearly interpolated on the time axis of the DNS
database for direct comparison. For control-purposes, the ROM needs to predict the flow over short
periods, and we focused on a time horizon of 5t+ in all the results presented here. The initial condition
was an arbitrary realization in the middle of the DNS save-record.

Let the simulated fluctuating velocity be denoted by ũ(x, r, q, t). The actual fluctuating velocity

u(x, r, q, t) is also known at the same time instant t. Thus, with the underlying inner product defined as

for any two fields u(1) and u(2), we propose the simulation error

metric

(28)

The second expression follows from the orthonormality of the eigenfunction basis. Here, the POD modal
coefficients α̂(n)(t;m) and α̃̂(n)(t; m) correspond to velocities u(., ., ., t) and ũ(., ., ., t), respectively.

Figure 8 shows the simulation error evaluated for the ROMs developed using the original DNS
database, for various choices of the cutoffs Nn,2 and Nm. The errors are quite large, demonstrating the
inherent inaccuracies of low-dimensional modeling for this complex flow. Including the largest number
of modes does not always result in the most accurate model34,36,64, and this is observed here too. For
real-time control, the dimension of the model must be kept at a minimum, and Figure 8 suggests a
choice of Nn,2 = 5 and Nm= 5, corresponding to esim = 0.77. These parameters define the 30-dimensional
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Figure 8. Simulation error for ROMs built from the original DNS database for various choices of the cutoff.



basis that is retained for the ROMs studied hereafter. Note that this basis captures 35% of the total
energy of the flow.

The simulation error esim is a gross metric; to get a better intuition, we present some snapshots of the
flow evolution from the ROM simulation in Figure 9. The velocity fluctuations on the q = 0 plane are
shown. The time instants are measured from the initial condition chosen for generating Figure 8.
Figure 9 is to be compared with Figure 10, which shows the projection of the corresponding realizations
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Figure 10. Original DNS realizations projected on the 30D basis used in Figure 9, at matching time instants.

Figure 9. Evolution of a simulated 30D ROM educed from the original DNS database.

Figure 11. Original DNS realizations at time instants matching Figure 9.



of the original DNS database onto the same 30D eigenfunction basis. In Figure 11 we also present the
actual snapshots at the corresponding instants. As expected, the overall discrepancies are quite large,
but most of the differences result from the use of a partial basis for the reconstruction. The different
components of velocity are modeled with different accuracies with decreasing order being axial, radial,
and azimuthal. The turbulent kinetic energies associated separately with the three components were
also found to be ordered similarly for this database. Since the underlying vector POD is weighted
towards the more energetic component, the perceived difference in modeling accuracy is to be
expected. Overall, the low-dimensional dynamics of the flow are seen to be captured with good
accuracy over the selected simulation time horizon.

The error metric defined in eqn (28) essentially compares the realizations represented partially in
Figure 9 with those in Figure 11. One can also compare Figure 9 with Figure 10, i.e., compare the
simulated realizations from a ROM to the actual realizations projected onto the underlying basis for the
ROM. This gave an error value of 0.45 for the 30D ROM under consideration. This demonstrates that
a large part of the simulation error defined in eqn (28) can be explained by the relatively low percentage
of energy captured by the 30D basis. The remaining part of the error is due to the inability of this basis
to capture the dynamics of the retained modes (the Galerkin projection error). However, the analysis of
Figure 8 makes it clear that the 30D basis is still optimal keeping in mind the requirement that the
control-oriented model should have a very low dimension.

An ROM was also derived by Galerkin projection onto the 2D POD basis educed from the
reconstructed database chosen in Section 3.2. The cutoffs were retained as Nn,2 = 5 and Nm = 5 to define
a new 30D basis. The initial time matched the previous simulation, and the corresponding reconstructed
realization was projected onto the new 30D basis to obtain the set of initial POD modal coefficients.
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Figure 13. Reconstructed realizations projected on the 30D basis used in Figure 12, at matching time instants.

Figure 12. Evolution of a simulated 30D ROM educed from the reconstructed database chosen in Section 3.2.



The evolution of this ROM is shown in Figure 12; for this model esim = 0.91. For comparison, Figure 13
shows the projection of the corresponding reconstructed realizations onto the same basis. The shape and
strength of the structures are seen to be quite alike in these two figure, thereby once again attesting to
the fidelity of the Galerkin projection. If, as in the above analysis, the simulated field is compared to
the projected field, then the error value was 0.69.

The availability of the DNS database allowed us to evaluate two additional models that incorporated
compressibility effects. The first one employed the approach of Rowley et al.58, who proposed an
isentropic assumption and chose the state vector to include the local speed of sound in addition to the
components of velocity. The same authors introduced an inner product based on the stagnation
enthalpy. The eddy viscosity model described in Section 2.5 was replicated to incorporate the
dissipation necessary to counteract the truncation of the basis. This method was used to derive a 30D
ROM from the original DNS database. The simulation error was computed in a manner akin to eqn (28),
and was found to be 0.82. The other modeling technique was adapted from the works of Iollo et al.65,
Gloerfelt66 who projected the full compressible Navier-Stokes equations using a state vector consisting
of the specific volume and pressure in addition to the velocity components. In the absence of a suitable
energy-related inner product, they simply extended the inner product definition from the
incompressible case; this makes the POD and GP dependent on the particular normalization used.
Following their work, we normalized the specific volume by that of the ambient flow, and the pressure
as in Section 2.1. The eddy viscosity modeling was repeated. A 30D ROM built in this manner
demonstrated a simulation error of 0.78. In fact, both the models demonstrated simulation error plots
quite similar to Figure 8. This substantiates the claim that the neglect of the compressibility effects of
the Mach 0.9 flow is not the source of the simulation errors; instead the source is to be found in the
slow convergence of the POD eigenspectrum.

The related work of Schlegel et al.67 came to our attention at the galley proof stage of publication.
The particular contribution of our research is the proposed modeling strategy that can be adapted for
experimental implementation in high Reynolds number flows.

4. Conclusion
The first step in model-based feedback flow control is the development of a reduced-order model of the
unforced flow; this has been pursued here for an axisymmetric jet. An existing direct numerical
simulation database of a Mach 0.9 low Reynolds number jet is used to guide the modeling, with an eye
toward feasibility of later experimental implementation. The two phases of the modeling are 
(a) reconstructing a database of snapshots of the 3-component velocity field over the pertinent 3D
domain of the jet mixing layer from experimentally accessible measurements, and (b) determining the
dynamics of the most energetic structures in this domain.

For the first phase, we adopted the spectral linear stochastic estimation technique presented by
Tinney et al.29,30 that employs pressure measurements on an azimuthal array in the irrotational near-
field of the jet. The estimation coefficients are determined from the cross-spectra between pressure
measurements and low-dimensional representations of the velocity fields on individual cross-stream
slices covering the axial domain of interest in the jet mixing layer. We showed here that the
reconstruction fidelity is substantially improved by incorporating an additional linear array of pressure
sensors in the near-field, at little extra cost. The statistical significance of the estimation was improved
by systematically enforcing the axisymmetry axiom for the flow.

For the second phase, proper orthogonal decomposition was used to educe an orthonormal partial
basis for the velocity field consisting of the most energetic structures. Subsequently, Galerkin
projection of the incompressible Navier-Stokes equations onto this basis yielded a set of ordinary
differential equations that govern their dynamics. To validate the procedure, a 30-dimensional basis was
first derived from the original database. Simulations of the resulting model demonstrated that the
evolution of the large-scale structures are well-captured. Finally, a basis of the same dimension was
obtained from the database reconstructed in the first phase. Simulations of the resulting ROM showed
that it may be acceptable for the purposes of feedback control.

The continuation of this research would include physical experiments to obtain the empirical
database for modeling purposes, as well as the explicit inclusion of the effect of actuation. A promising
approach is to model the downstream effect of actuation as weak compression waves that can be
introduced in the model through the pressure term in eqn (23). Further work would involve the design
of observers that would use measurements of the near-field pressure to estimate the mixing effect in the
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near-field shear layer and the far-field noise. Once all these pieces are in place, the feedback control
algorithm may be developed. In all this, it must be clear that the modeling of the unforced flow pursued
here constitutes an important first step towards the end goal.
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APPENDIX: COEFFICIENTS OF THE ROM
The expressions for the coefficients of the ROM presented in eqn (23) are

The dependence of the eigenfunctions on x and r have been suppressed for notational convenience. For
accuracy of numerical differentiation, the second derivatives of the eigenfunctions have been
transformed into first derivatives by integration-by-parts. The symmetries of the POD eigenfunctions
established in the 2D POD counterpart of eqn (10) immediately lead to the conclusion that all the
coefficients are purely real.
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