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Abstract
This paper considers methods for the feedback control of thermoacoustic oscillations.
Two distinct approaches to the problem are considered. The first is robust model-based
control, which involves two stages: finding a model of the system, and designing a
controller based on that model. The focus is on using model reduction techniques to find
a low-order, balanced model of the Rijke tube which, despite having few degrees of
freedom, is useful for feedback control design purposes. The second approach uses
adaptive (or self-tuning) control, which does not require a model of the system, but
instead requires that it meets some general properties. The focus here is on reducing how
much must be known a priori about the plant. Specifically, an adaptive controller is
considered which does not require knowledge of the sign of the plant’s high-frequency
gain, and this is done by employing a Nussbaum gain. The controllers are successfully
applied in experiments on a Rijke tube. Both controllers completely eliminate
oscillations, and in both cases stability is maintained following a large change in
operating conditions.

Keywords: combustion oscillations, thermoacoustics, feedback flow control, adaptive
flow control, reduced-order modeling

1. INTRODUCTION
Thermoacoustic instability can occur in any system where combustion takes place within an acoustic
resonator, and is caused by a coupling between unsteady heat release and acoustic waves. Unsteady
combustion is an efficient acoustic source [1], and combustors tend to be highly resonant systems,
which together can lead to self-excited oscillations by the following mechanism, first described by
Rayleigh [2]. Pressure waves, generated by unsteady heat release at the flame, reflect from the
combustor boundaries and arrive back at the flame. If the phase relationship is suitable, their interaction
with the flame gives rise to further unsteady heat release, which in turn generates more pressure waves,
completing the natural feedback loop. See Candel [3] for a review of combustion oscillations.

Many of the earliest studies of thermoacoustic instability were for liquid-propellant rocket motors in
the 1950s and 1960s [4], research that was motivated by the stability problems encountered in those
devices. More recently, the problem of thermoacoustic stability has been encountered in low NOx gas
turbine applications, where using lean premixed combustion makes the combustor especially prone to
oscillations [5, 6], and this has motivated a great deal of research on the subject [7, 8].

Many different strategies for eliminating thermoacoustic instability have been considered, and these
can be split into two broad categories: passive control, which relies on some modification of the
system’s geometry or boundary conditions to affect the system; and active control, which uses actuation
to provide external energy. Active control can be further divided into open-loop and closed-loop control
schemes. In open-loop active control, no sensors are used and the forcing is ‘blind’ – the actuation does
not depend on the measurement of any parameter of interest. McManus et al. [9] review open-loop (and
early closed-loop) control studies of combustion oscillations.

Closed-loop (or ‘feedback’) control, like open-loop control, uses an actuator (typically a
loudspeaker or fuel injector) to provide external energy to the system. The crucial difference is that the
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actuation is in response to a measured signal (most commonly pressure). Closed-loop control therefore
has three essential ingredients: sensors for the measurement of some system parameter; actuators to
alter the system in some way; and a feedback law by which the actuators respond to the sensor
measurements. Such closed-loop strategies are the focus of the more recent review by Dowling and
Morgans [10], and the focus of this paper.

The first experimental closed-loop control studies were performed on the Rijke tube [11], and shortly
afterwards on an afterburner [12] and on a turbulent ducted flame [13]. Those early studies all involved
simple phase-shift or time-delay control loops. Gulati and Mani [14] showed the inadequacies of such
controllers, and demonstrated the improved closed-loop performance of a controller designed using the
frequency response of the system and Nyquist techniques. Since then, model-based control techniques
have been promoted [15, 16] and many such studies have been performed. In any model-based control
scheme, there are two pertinent issues to address. First, a model of the system must be available. This
can come from a physics-based model [17, 18] or, less commonly, directly from experiments using
system identification techniques – which could involve finding a mathematical model [19] or measuring
the frequency response directly [16]. (The dynamical processes involved in large- and full-scale systems,
such as combustion and turbulence, are too complex for physics-based models to be useful, and so
system identification techniques are crucial for model-based control at these scales.) Second, a
framework for the controller design must be chosen, and this has typically involved Linear Quadratic
control or some variant [20, 19], Nyquist techniques [14, 16] or H∞ loop-shaping [21, 17].

Another type of control scheme which has received attention is adaptive control, where the
controller adapts to changes in the system, thereby maintaining control over a wide range of operating
conditions. The first ‘dynamic’ adaptive controllers for combustion oscillations (using concomitant
sensing and actuation timescales) were Least Mean Squares (LMS) controllers [22]. Since then neural
networks [23] and observer-based adaptive controllers [24] have also been considered. More recently,
a class of self-tuning regulators has been considered [25]. The adaptive tuning of the control
parameters is based on finding a Lyapunov function which reduces in amplitude with time when the
control parameters are updated in the right way. Annaswamy et al. [26] looked at such an adaptation
scheme for a specific combustion system, and Evesque et al. [27] followed by considering a scheme
that was valid for a whole class of combustion systems. Determining an accurate model of a
combustion system which is useful for feedback control purposes is one of the most difficult aspects
of model-based feedback control, and so the advantages of adaptive control are clear. No such model
is required, and instead only minimal information about the system is needed. This is particularly true
of the self-tuning regulators of [26] and [27], since only some very general assumptions about the
combustion system are made.

This paper investigates model-based and adaptive control of thermoacoustic oscillations, using the
Rijke tube as its experimental test bed. The paper is organized as follows. In §2 the Rijke tube is
introduced and its open-loop transfer function is derived using a simple analytical model. The
experimental arrangement is also introduced, and a method for finding the linear transfer function from
experimental data is described. In §3, model-based feedback control is considered. The focus is on
finding a simple, low-order model of the Rijke tube which is useful for feedback control design. In §4,
adaptive (or self-tuning) feedback controllers are considered. Such controllers require little information
about the system, and the focus here is on reducing this further by considering an adaptive controller
which does not require knowledge of the high-frequency gain (defined in due course) of the open-loop
system.

2. THE RIJKE TUBE
The Rijke tube provides a simple means of generating combustion oscillations on a laboratory scale. It
consists of a vertical cylindrical tube open at both ends, with a heat source inside the tube some distance
from the lower end. Large-amplitude acoustic oscillations are excited when the heat source is in the
lower half of the tube [28].

2.1. Open-loop transfer function
In this section we use some simple physics to find an analytical expression for the open-loop transfer
function between a pressure forcing signal (provided by a loudspeaker) and a pressure measurement
downstream of the flame. We will not use this analytical expression directly for controller design, nor
will we compare it to the open-loop transfer function that we will find using the Eigensystem
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Realization Algorithm in §3. (For a comparison of the analytical model developed here with that found
experimentally using system identification techniques, see Dowling and Morgans [10].) The reason we
include the analysis here is to show how the Rijke tube’s transfer function is affected by its geometry,
boundary conditions, flame dynamics and sensor location.

The analysis used here is the same as that used by Dowling and Morgans [10]. Consider the Rijke
tube arrangement shown in figure 1. In analyzing the system we assume that the frequencies of interest
are sufficiently low that the combustion zone is short compared to the acoustic wavelengths; that there
is negligible mean flow; that entropy waves can be neglected; and that the mean density ρ

_
and speed

of sound c
_
remain constant throughout the tube. (Changes in ρ

_
and c

_
have little effect on the system’s

stability characteristics [29].)

Downstream of the combustion zone (region 2, which is where the pressure sensor lies), the pressure
obeys the linear wave equation and so the pressure and velocity can be written as

(1)

. (2)

(Similarly, the pressure and velocity upstream of the flame (region 1) can be written in terms of the
waves A(t) and B(t).)

The inward-traveling waves A(t) and D(t) can be related to the outward-traveling waves B(t) and C(t)
by introducing reflection coefficients at the bottom and top boundaries. For the upstream wave A(t),
there will also be a contribution from the loudspeaker pressure signal, which we label L(t).

To relate the acoustic waves either side of the combustion zone, the linearized conservation
equations can be used [30]. For negligible mean flow these require zero pressure difference and a
velocity jump that is related to the heat release rate. We model the rate of unsteady heat release per unit
area q by relating it to the unsteady velocity just upstream of the flame, which in the Laplace domain
can be written as

. (3)

Here H(s) is the flame transfer function.
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Figure 1: Schematic of the Rijke tube model used to form an analytical expression for the open-loop transfer
function.



By combining the acoustic equations; the boundary conditions; the conditions across the flame zone;
and the unsteady combustion model, and then taking Laplace transforms, we can relate the outward
traveling waves B(s) and C(s) to the loudspeaker pressure signal L(s):

(4)

where F(s) = [1 + (γ − 1)H(s)], τb = 2xb/c and τt = 2xt/c.
We are interested in a pressure measurement downstream of the combustion zone, so we first solve

eqn (4) for C(s). Then using eqn (1) for the acoustics we can solve for the pressure at some downstream
location xc. Introducing a loudspeaker transfer function Wc(s), which relates the control voltage Vc(s)
to the pressure signal L(s), Wc(s) = L(s)/Vc(s), we finally arrive at

, (5)

where J(s) is the determinant of the 2 × 2 matrix in eqn (4).
Therefore the poles (or eigenvalues) of the open-loop system are determined by the 2 × 2 matrix in

eqn (4), and we see that they depend on the reflection coefficients at the boundaries Rb and Rt, the
acoustic propagation times τb and τt, and the flame transfer function H(s).

2.2. Location of the system zeros
As well as considering the system poles, it is also important to consider its zeros (i.e. those values of s
where P(s) = 0) because these are also important for feedback control. In particular, any zeros in the
right half of the complex s-plane will make feedback control more difficult [31, chap. 5]. Furthermore,
the adaptive controller that we will develop in §4 requires that any zeros are in the left half-plane. From
eqn (5) we see that there are three sources of zeros: the loudspeaker transfer function Wc(s), the
reflection coefficients term [1 + Rte

−2s(xt − xc)/c], and the term F(s) = [1 + (γ − 1)H(s)], which is related
to the flame dynamics. We now treat each of these terms in turn.

The zeros contributed by Wc(s) will of course depend on the loudspeaker dynamics. We make the
assumption here that the loudspeaker does not introduce any right half-plane zeros, which is a
reasonable assumption for a simple loudspeaker.

A necessary (but not sufficient) condition for [1 + Rte
−2s(xt − xc)/c] = 0 is that e−2Re(s)(xt − xc)/c = 1 /|Rt|.

Therefore if Rt satisfies |Rt| < 1 then any zeros arising from this term are guaranteed to be in the left
half-plane. That |Rt| < 1 is a reasonable assumption to make for the low Mach-number flow in the Rijke
tube, which allows us to assume that this term will introduce left half-plane zeros only. (At a higher
(non-negligible) Mach number M, the theoretical reflection coefficient at an open boundary becomes 
−(1 + M)/(1 − M), which means it may in this case exceed 1, even in the presence of damping [32].)

Finally, the zeros contributed by the term F(s) = [1 + (γ − 1)H(s)] will depend on the flame dynamics
H(s). Physically, these zeros are the result of a cancellation of two sources of acoustic waves: those
caused by unsteady heat release; and those generated directly by the loudspeaker. (Notice that, unlike
the zeros of the term [1 + Rte

−2s(xt − xc)/c], these zeros are independent of the sensor location xc.) The
flame dynamics are in general too complex to make any general statements on this term, but we make
three observations here. The first is that if we adopt a simple model of the flame which includes a gain
and a time delay, H(s) = ke−sτ, then we see that a necessary (but again, not sufficient) condition for the
zeros is that

, (6)

from which we see that right half-plane zeros can occur if |k| > 1/(γ − 1)). The second observation is
that despite this possibility for right half-plane zeros (which still exists for more complex flame
dynamics), no right half-plane zeros are present in the open-loop transfer function to be presented in 
§3. The third observation, and the one that is most encouraging, is that this source of zeros is linked to
the loudspeaker actuation, and is not a general feature of feedback-controlled combustion systems. If
we instead used a valve to modulate the fuel flow rate to the combustion zone – which is the most
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practical means of actuation at large- and full-scale – then this source of zeros would disappear. See
Morgans and Annaswamy [32], where the open-loop transfer function is derived for this type of
actuation, and where no such zeros occur.
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Figure 2: Experimental set-up of the Rijke tube: (a) schematic; and (b) corresponding block diagram for the
system linearization.

2.3. Experimental arrangement
The Rijke tube used is the same as that used by Morgans and Dowling [16]. It consists of a cylindrical
quartz tube of length 750 mm and diameter 44 mm inclined vertically as shown in figure 2(a). A
propane-fuelled Bunsen burner provides a laminar flame which is stabilized on a grid 210 mm above
the bottom of the tube. In these experiments a variable length trombone-like attachment is also used,
which allows the length of the Rijke tube to be varied between 750 mm and 1030 mm. The Rijke tube
exhibits instability over the entire range of this variable length, the frequency of the instability varying
from 246 Hz at a length of 750 mm, to 193 Hz at a length of 1030 mm. (In §3.1 a linear model will be
found for the Rijke tube at a length of 890 mm, which exhibits oscillations at a frequency of 227 Hz in
the absence of control.)

Measurement of the pressure perturbation (denoted pc) is provided by a condenser microphone fitted
to a tube tapping situated 410 mm from the bottom of the tube. The semi-infinite line technique is used
to obtain thermal insulation without distortion from acoustic reflections. Actuation is achieved using a
50 W low-frequency loudspeaker (with the control voltage to the loudspeaker before amplification
denoted Vc – see figure 2(a)) situated close to the lower end of the tube. The loudspeaker exhibits a flat
frequency response over the frequency range of interest (50–2000 Hz). Outside of this range, its
dynamics become more complicated. To eliminate these dynamics, a bandpass filter is applied to the
microphone signal with a pass-band from 50 Hz to 2000 Hz.

The controllers to be presented are implemented on a TI C6713DSK DSP board with ADC and DAC
evaluation modules (an ADS8361EVM and a DAC7731EVM). The pressure measurement pc and
control voltage Vc are recorded using a PC-based data acquisition system. The sampling frequency for
both the DSP board and the data acquisition system is 5000 Hz.

2.4. Finding the Rijke tube’s linear dynamics
In §3, linear model-based control techniques will be used to design robust feedback controllers for the
Rijke tube, and clearly such techniques require a linear model of the Rijke tube. This is challenging,
because the growing amplitudes of the unstable thermoacoustic oscillations will ultimately give rise to
non-linear limit-cycling behaviour.

One solution to this problem is to acquire the model at a stable operating point which is close to the
unstable case of interest. This stable system will have a linear response to (sufficiently small) forcing,



and one hopes that a controller designed for this stable system will also be successful for the unstable
system of interest. This approach was successfully used for combustion oscillations by Langhorne et
al. [33] and by Tierno and Doyle [21].

A second solution, and the solution used in this paper, is to first stabilize the system using feedback,
and to measure the response to forcing of the (linear) system operating in closed-loop. This approach
has been used successfully for combustion oscillations before by Morgans and Dowling [16], and is
shown schematically in figure 2(b), where P(s) is the open-loop system of interest and K(s) is a
feedback controller. The controller used to stabilize (and therefore linearize) the Rijke tube is a
manually-tuned, trial-and-error phase-shift controller.

The total input voltage Vc in figure 2(b) is given by Vc = Vw − Vf (negative feedback convention), where
Vw is a forcing signal and Vf is the control voltage from the feedback controller. The system’s open-loop
transfer function P(s) is then given by

.

Therefore despite the system’s operating in closed-loop, its open-loop dynamics are recovered. (If
instead the forcing signal Vw were used as the system input, the closed-loop, stabilized transfer function
would be found.)

One must ensure that the system is responding linearly to the forcing signal uw for the forcing
amplitudes used. This was verified for both systems by checking that the controlled system satisfied
both the additive property y(u1 + u2) = y(u1) + y(u2) and the homogeneous property y(αu) = αy(u).

One may now ask: if the Rijke tube is already stabilized, why do we need to design a controller for
it? The answer lies in the superior performance of a model-based controller: the initial stabilizing
controller is found by trial-and-error, but feedback control is most successful when an accurate model
of the system-to-be-controlled is available. In §3 we will see that by using an accurate model of the
Rijke tube, control can be achieved over a wide range of operating conditions.

A disadvantage of the present method is that the dynamics generating the instability need to
reasonably simple (in some sense) for the Rijke tube to be stabilized by trial-and-error in the first place.
There are two things that one should keep in mind concerning this point. First, a model-based controller
should provide stability over a range of open-loop plants, and this means that one can start with a
relatively ‘gentle’ instability, and then apply the controller so-designed at a more challenging design
point. One may even design the controller for a nearby stable operating point, and reasonably expect
that the controller will be successful on the unstable plant: this has previously been achieved [33, 21].
Second, it has been acknowledged for some time that there are advantages to performing system
identification in closed-loop rather than in open-loop [34], since it is the closed-loop behaviour that one
is ultimately interested in. Indeed, given two systems (which could represent two different operating
conditions, for example), it is possible for those systems to be very similar in their open-loop behaviour,
yet very different in closed-loop (and vice versa) [35], which further motivates this approach.

3. ROBUST FEEDBACK CONTROL USING A REDUCED-ORDER MODEL
This section looks at the first of the two approaches for feedback control: synthesizing a regulator using
model-based control techniques. There are two steps to such an approach: first find a model of the
system, and then design a regulator based on that model, and these two steps constitute two important
decisions for any model-based control approach. The first of these is addressed in §3.1, where the
method for finding a model of the Rijke tube is described, and the second is addressed in §3.2, where
the choice of regulator, the Linear Quadratic Gaussian (LQG) regulator, is introduced.

3.1. Reduced-order modeling using the ERA
Finding simple dynamical models of the Rijke tube is crucial if model-based control techniques are to
be successful. ‘Simple’ here means two things in particular: that the model is linear; and that the model
is low-order (equivalently, that it has a small number of degrees of freedom). The first of these
requirements has already been addressed in §2.4. The second requirement is the focus of this section.
There are a number of options for forming low-order models of fluid systems (which are governed by
partial differential equations and are therefore infinite-dimensional). Perhaps the most commonly used
is the Proper Orthogonal Decomposition (POD), also known as principal component analysis, or the
Karhunen-Loeve expansion. The resulting POD modes are optimal in that they maximize the average

P s
p s

V s
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c
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energy in the projection of the data onto the subspace spanned by the modes. However, these POD
modes may not be the best modes for describing the dynamics that generate the data set, and these
dynamics are crucial when one is interested in a model for feedback control purposes.

Recent work by Rowley [36] and by Ma et al. [37] has demonstrated the importance of using
reduced-order models that are balanced, at least when those models are to be used for feedback control
design. The balancing refers to the observability and controllability Gramians of the resulting reduced-
order model being equal and diagonal. As their names suggest, these Gramians are linked to the
observability and controllability of the model, and these two concepts are important for reduced-order
modeling. Referring to eqn (7), observability is concerned with the measurement of the state x, while
controllability is concerned with the manipulation of that state. Physically, the Gramians being equal
and diagonal means that the dynamics that generate the data set are properly taken into account. These
notions are discussed in more detail in Appendix A, where the observability and controllability
Gramians are also defined.

To form a reduced-order model of the Rijke tube, the Eigensystem Realization Algorithm (ERA) is
used [38, 39], which gives a balanced, reduced-order state-space model of the system (in discrete-time)
of the form:

(7)
.

Here u ∈ Rp is the system input, y ∈ Rq is the system output, x ∈ Rn is the system state, and A, B, C
are suitably-dimensioned matrices.1 The ERA is explained in more detail in Appendix A. The ERA has
been used for fluids before. Cattafesta et al. [40] and Cabell et al. [41] used it for flow control purposes,
but as a system identification technique rather than for model reduction. Gaitonde and Jones [42] used
it to form a reduced-order model of a CFD scheme, and Silva and Bartels [43] used it for reduced-order
modeling of aeroelastic flutter, but neither of these studies was concerned with feedback control of the
flow. For more details on the ERA specifically for fluid flows, see [37, 44, 45, 46].

The state-space model used is eighth-order (n = 8), which was found to be adequate to capture the
most dominant dynamics of the Rijke tube. This is shown clearly in figure 3, where the frequency
response (or transfer function) of the eight-state, balanced model is compared in a Bode diagram to that
found using spectral analysis [47] (which rather than giving a reduced-order model, gives the complex-
valued response at a discrete set of frequencies). The phase increase seen across the first mode at 
227 Hz indicates that the corresponding eigenvalues (or poles) are in the right half of the complex
plane, and therefore unstable. The phase decrease across the second mode at 680 Hz indicates that the
corresponding poles are in the left half-plane, and therefore stable. Note that the zeros seen at
frequencies of approximately 445 Hz and 1320 Hz can both be attributed to the reflection coefficients
term [1 + Rte

−2s(xt − xc)/c] in eqn (5) which, provided Rt < 1, will always be in the left half-plane for any
arrangement of the Rijke tube.

One observes that the eight-state model captures these first two modes of the Rijke tube, and we will
see in §3.3 that this is sufficient for feedback control design.

3.2. LQG regulator design
We now look at the subject of Linear Quadratic Gaussian (LQG) regulator design, which will use the
reduced-order model to form a feedback controller for the Rijke tube. A closed-loop control
arrangement for some general plant P(s) is shown in figure 4. Here K(s) is the closed-loop regulator-
to-be-designed. The effect of noise (n) and disturbances (d) is included. For the discrete-time state
space model defined by eqn (7), a Linear Quadratic (LQ) regulator uses the state feedback law

u = −Γx (8)

to minimize the quadratic cost function

(9)J x Q x u Q uT
x

T
u

i

= +( )
=

∞

∑ .
0

y k Cx k( ) ( )=

x k Ax k Bu k( ) ( ) ( )+ = +1
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Qx ∈ Rn × n and Qu ∈ Rp × p are weighting matrices used to penalize large system states and large control
inputs respectively. The Rijke tube has a single input (u = Vc), and so Qu in eqn (9) is simply a scalar.
The output measurement (y = pc = Cx) is chosen as the output cost (giving Qx = C

TC), and the quadratic
cost function has the simple form:

where the scalar qu is used to specify the relative importance of maintaining a small input signal (Vc)
and maintaining a small output measurement (pc). The value used is qu = 7.10.

Substituting eqn (8) into eqn (7), we obtain the closed-loop system

x(k + 1) = (A − BΓ)x(k)
(10)

y(k) = Cx(k)

and we see that, by suitable choice of the feedback gain matrix Γ, the eigenvalues of (A − BΓ) – and
therefore the dynamics of the closed-loop system – can be made stable.

J p q Vc u c
i

= +( )
=

∞

∑ 2 2

0

,
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Linear Quadratic (LQ) control assumes that the full state x is available to the regulator - this state
is used in the feedback law (8). In many cases, though, the full state is not available for measurement,
the regulator having direct access only to the inputs u and the outputs y. Linear Quadratic Gaussian
(LQG) control remedies this by using an observer to form an estimate of the real state x. This
estimate of the state is used in the LQG control feedback law

It remains to see how the estimate of the state is formed. The Gaussian term in Linear Quadratic
Gaussian control refers to the specific type of observer used, a Kalman filter. A Kalman filter amounts
to a specific choice of the observer which is optimal, in the sense that the error converges in the
presence of stochastic disturbances d and noise n (see figure 4), assumed to be zero-mean, Gaussian,
white-noise processes. The covariances used in the Kalman filter design are E(ddT) = 3.0 × 10−4 and
E(nnT) = 2.1 × 101.

x̂

u x= −Γˆ.

x̂



The LQG and optimal estimation problems can be solved using standard routines in Matlab. The
resulting LQG controller and observer can then be combined to give an overall regulator K(s), which
is of the same order as the plant model used P(s).

It should be noted that although the LQ control problem has guaranteed stability margins, there are
no such guaranteed margins for the LQG control problem [48], and therefore the stability margins must
be checked for a given control design. In practice, though, LQG control often gives very satisfactory
results, and this will be seen in the next section.

3.3. Experimental results
We now look at applying the LQG regulator to the Rijke tube experiment. The LQG regulator is first
applied at the design length of 890 mm. The robustness of the regulator is then tested by applying it at
an off-design length of 750 mm.

Closed-loop control results for the design length of 890 mm are shown in figure 5. Control is
activated after 0.25s, by which time the Rijke tube is exhibiting limit-cycle oscillations. The LQG
regulator stabilizes the Rijke tube, and the pressure measurement is reduced to the background noise
level within approximately 0.15s.

Figure 6 shows the results of the LQG regulator applied at the off-design length of 750 mm. The
regulator still provides closed-loop stability when control is activated after 0.25s, and the pressure
measurement is still reduced to the background noise level, demonstrating the robustness of the controller.
The off-design Rijke tube length represents a change of –15.7% from the nominal length. Comparing this
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Figure 5: Closed-loop control of the Rijke tube at the design length of 890 mm.
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Figure 6: Closed-loop control of the Rijke tube at the off-design length of 750 mm.



with the original trial-and-error controller makes clear the advantages of the model-based control
approach: this original controller loses stability following a change in length of less than 3.0 %.

A few remarks are in order here, first concerning the order of the Rijke tube’s state-space model, and
second concerning the Rijke tube’s linearity.

The eight-state reduced-order model captures the first two modes of the Rijke tube, but in many
ways it is most important to capture the first (unstable) mode, and to do this a reduced-order model with
just two states suffices. Closed-loop control experiments were also performed using an LQG regulator
based on this two-state model, and closed-loop stability was still achieved, even as the Rijke tube’s
length was varied. However, one must also consider that, although the higher-order modes do not need
to be stabilized by the controller, they could be destabilized by it, and so in practice, accounting for
them with a higher-order model is wise.

The state-space model found represents the linear dynamics of the Rijke tube, but the controller
is activated from within a pressure limit-cycle, which is certainly not linear. Such behaviour – where
linear control methods stabilize the non-linear system – has been seen previously in closed-loop
control studies of combustion oscillations, and Dowling [30] provides an explanation for it using
describing function analysis. We will see the same kind of behaviour for the adaptive controller,
considered next.

Finally, we have seen that the LQG regulator is sufficiently robust to deal with the dynamical
differences brought about by the change in length, but we have not attempted to quantify this. This
could be achieved using the ν-gap metric [35], which is the most useful measure of distance between
systems when one is concerned specifically with applying feedback to those systems. The ν-gap metric
fits very naturally into an H∞ loop-shaping control design, and this would be an interesting area for
future work.

4. ADAPTIVE CONTROL FOR UNKNOWN CONTROL DIRECTION
This section represents a significant break from the previous section, where model-based feedback
control methods were used. Here the focus is instead on adaptive (or self-tuning) control, which
requires no model, but instead requires that the system meet certain general properties. The work
presented here is intended as an extension of previous work on adaptive control of combustion
oscillations [27, 49, 50].

Throughout this section, the adaptive controllers considered amount to a simple proportional gain
controller, i.e. u(t) = −k(t)y(t), the adaptation made clear in this equation by the feedback gain k(t)
being a function of time. The adaptive control problem is then concerned with providing an updating
rule for k(t).

First in this section, the high-frequency gain of a system is defined, and its importance for
Lyapunov-based adaptive control is discussed. A Lyapunov-based adaptive controller is then
introduced, which provides an updating rule for k(t), but which requires knowledge of the sign of the
system’s high-frequency gain to do it. This leads to the main contribution of this section: an adaptive
controller which, by employing a Nussbaum gain, does not require knowledge of the high-frequency
gain of the system. The controller is first introduced, and then applied successfully to the Rijke tube,
where it eliminates thermoacoustic oscillations.

4.1. Importance of the high-frequency gain
Lyapunov-based adaptive control – so-called because of its foundations in Lyapunov stability theory – 
is a well-established method for the adaptive stabilization of unknown systems, and relies on finding
a suitable Lyapunov function, via which closed-loop stability can be proved. A Lyapunov function is
always positive-definite and can therefore be thought of as an energy function. The time derivative
of the Lyapunov function is guaranteed to be negative if the time derivative of a control vector is
updated in the right way. Therefore when the right updating rule is used, the Lyapunov function 
is guaranteed to decrease monotonically in time, and the control vector is guaranteed to converge to
a stabilizing set.

At the heart of Lyapunov-based adaptive control are three assumptions [51]. If the open-loop system
has transfer function P(s), and if we write P(s) as the ratio of two co-prime, monic polynomials

,P s g
N s

D so
P

P

( )
( )

( )
=
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then the three conditions placed on P(s) are [51]:

(i) The sign of the high-frequency gain go is known.
(ii) The relative degree n* of P(s) is known.2 (I)
(iii) The zeros of P(s) are all stable (i.e. P(s) is minimum phase).

It is the first condition that we concern ourselves with here. For many systems, the sign of the high-
frequency gain (whose physical significance is given in the following) is obvious from the physics of
the problem, and so providing it poses no problem.

Combustion systems, however, are infinite-dimensional, and so the sign of the high-frequency gain
is unknown. There are two ways to view this infinite-dimensionality. The first is to consider that the
system is governed by partial, rather than ordinary, differential equations, which have an infinite
number of degrees of freedom. The second is by looking at eqn (5), where we see that the open-loop
transfer function involves time delay terms of the form e−sτ. This time delay term is not rational: it
cannot be written as the ratio of two polynomials in s.3 The phase of a pure time delay evaluated at
frequency s = iω, that is e−iωτ, is −ωτ, which evolves indefinitely with frequency. Therefore the sign of
the high-frequency gain of a pure time delay is not defined.

Physical significance of the high-frequency gain
To demonstrate the physical significance of the high-frequency gain, we now look at a simple first-
order unstable system whose transfer function is

(11)

where u is the system input, y is the system output, s is the Laplace variable like before, go is the high-
frequency gain of the system and a (which is positive for an unstable system) corresponds to the
location of the system’s (only) pole. In the time domain, this corresponds to the first-order differential
equation

.

Looking at for small time using the initial value theorem, and for a unit step input u(s) = 1/s:

Therefore knowing the sign of the high-frequency gain corresponds to knowing, in the time domain,
the sign of the system’s ‘instantaneous gain’: that is, knowing whether the system’s response to a
positive unit step input is positive or negative for t sufficiently small. More generally, for an nth order
system with a relative degree of n*, the same analysis can be applied to the (n*)th derivative of the
output, y(n*).

Importance for feedback control
The term ‘high-frequency gain’ is perhaps a little misleading in some respects: it suggests that sgn(g0)
is only important because of its influence at high frequencies. Yet the results of §3, where the reduced-
order model is not at all accurate at high frequencies (see in particular figure 3), suggests that what
happens at high frequencies is not important for feedback control. Why then is sgn (g0) important? We
will now see, via a simple example, that sgn (g0) is important for feedback control because it dictates
the system’s ‘control direction’ (which explains the title of this section).
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minus the number of zeros.
3 Although it could be approximated by a rational function by using a Pade approximant, for example.



Consider a plant P(s) given by the first-order system (11), this time acted upon by a feedback
controller K(s). (Such an arrangement was shown in figure 4.) Consider the special case when the
feedback controller is simply a (fixed, for the moment) proportional gain, K(s) = k, so that u = −ky. Then
the closed-loop transfer function Pcl(s) is given by

.

Since the proportional gain k acts to stabilize the system by moving the closed-loop system’s pole
into the left half plane (i.e. by making the term (kgo − a) positive), we see that the proportional gain k
must be both of the correct sign (so that the product kgo is positive) and sufficiently large so that kgo >
a. Therefore the sign of g0 dictates the sign of k required for closed-loop stability. Again, this result
holds for any nth order system, as long as it has a relative degree n* of one. (It can be shown, using root
locus arguments, that any minimum phase system with a relative degree of one can be stabilized using
a proportional feedback gain alone.)

Importance for Lyapunov-based adaptive control
We now look at how these arguments apply to Lyapunov-based adaptive control. A system of relative
degree one that satisfies the three conditions (I) can be stabilized using a proportional feedback gain
[52]. We have seen that this feedback gain needs to be (i) of sufficient magnitude and (ii) of the right
sign. For a Lyapunov-based adaptive controller, the second condition must be provided via knowledge
of the sign of the high-frequency gain, which is used to form an adaptive controller with updating rule
and control law

(12a)

(12b)

It is clear how sgn(go) is used in (12a) to decide in which direction to update the control gain k(t)
(since y2(t) ≥ 0). The adaptive controller is then guaranteed to meet the first condition and provide
closed-loop stability, the proof of closed-loop stability being asserted using a suitable Lyapunov
function.

4.2. Adaptive control using a Nussbaum gain
Morse [53] suggested that knowledge of the sign of the high-frequency gain was intrinsic: in particular,
that a linear plant cannot be stabilized without knowledge of sgn(go). Nussbaum [54] proved this
conjecture for first order rational controllers. More importantly, however, by using a non-rational term
he constructed a globally adaptively stabilizing controller for a first order system which did not rely on
knowledge of the sign of go. The work of Willems and Byrnes [55] extends Nussbaum’s result to any
minimum-phase system with a relative degree of one.

The controllers used in those two studies both incorporate a Nussbaum gain N(k). Willems and
Byrnes [55] show that for the control of a minimum phase system with a relative degree of one, any
function N(k) which satisfies the conditions

(13)

is a Nussbaum gain and guarantees closed-loop stability for unknown sgn(g0). Such a Nussbaum gain
can be used with the updating rule and control law

to adaptively stabilize the system. These equations are very similar to the updating rule (12a) and
control law (12b) used for the Lyapunov controller. The key difference is that the Nussbaum gain – and
the conditions placed upon it – remove the need for knowledge of sgn(go).
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Functions satisfying (13) are a type of switching function. The review paper of Ilchmann [56] gives
some examples of such functions, including:

.

It is now clear how the Nussbaum gain achieves control without knowledge of the sign of the high-
frequency gain. The conditions imposed upon a Nussbaum gain (13) mean that it sweeps across both
positive and negative gains, while also increasing in magnitude with increasing k: in contrast to the
Lyapunov-based adaptive controller, a Nussbaum gain automatically meets both requirements for
closed-loop stability. For a proof of the closed-loop stability provided by a Nussbaum gain, see
Appendix B.

In closed-loop control, unnecessarily high feedback gains are to be avoided, not least because they
can place high demands on the actuator, and because they can lead to excitation of other modes of the
system. Using a Nussbaum gain which is a smooth function helps to alleviate any high gain behaviour
of the Nussbaum gain. Furthermore, one can help to ensure that the final stabilizing Nussbaum gain,
N*, is in the vicinity of the minimum required, and not significantly larger, by observing that the
Nussbaum gain only need switch sign once, if at all. This is explained more fully in Appendix C, where
choosing the adaptation rate µ (introduced presently in eqn (14c)) is discussed.

4.3. Experimental results
Two sets of experimental results are now presented.4 First, for fixed operating conditions, the
Nussbaum controller achieves control even when it is first updated in the wrong direction. Second, the
robustness of the controller is investigated by changing the length of the Rijke tube after control at the
nominal length has been achieved. Control is maintained following this change. To the authors’
knowledge, it represents the first experimental results for a Nussbaum-type adaptive controller.

The specific updating rule and control law used are

(14a)

(14b)

and the Nussbaum gain is

, (14c)

with γ = 1.24 × 10−7 and µ = 2.93. Here γ and µ are the adaptation rates of the controller, explained in
more detail in Appendix C.

The theoretical development of the Nussbaum gain ignores the influence of noise in the system.
Since noise will always be present in the pressure measurement pc (even when the system has been
stabilized), we see from eqn (14a) that k(t) will never be stationary. This problem can be solved by
introducing a dead-zone into the updating rule [57]. With this modification, k(t) is only updated if the
pressure pc exceeds some pre-defined limit (which is chosen based on the magnitude of the noise in the
system). The updating rule for k(t) then becomes

(15)

with Pd.z. = 37 Pa in this particular case, which is about 5 % of the limit-cycle amplitude.
Figure 7(a) shows adaptive control results when the Nussbaum gain is initially updated in the right

direction. The pressure perturbation has already established a limit cycle when control is activated at 
t = 0.2s. Since the Nussbaum gain is initially updated in the right direction, the cosine term in the
Nussbaum gain (14c) does not switch sign. Hence in this case the controller behaves much like a
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tube did not change, but the amplifier used did. Referring to figure 2, the amplifier is included in the model of the plant, P(s), and therefore the

results reported here are effectively for a different open-loop system to that presented in §3.



Lyapunov-based adaptive controller, and the tuning of the Nussbaum gain N(k) is very similar to that
of the adaptive parameter k.5 Within approximately 0.5s of control being activated, the controller finds
a stabilizing gain N*, and oscillations are eliminated.

Figure 7(b) shows adaptive control results when the Nussbaum gain is initially updated in the wrong
direction. The impact of this is clear: when control is first activated at t = 0.2s, the Nussbaum gain N(k)
causes the Rijke tube’s limit cycle to actually increase in amplitude. Soon after, however, the Nussbaum
gain changes sign and finds a stabilizing gain N* which is both of sufficient magnitude and of the right
sign. The system is stabilized within approximately 0.4s of control being activated. The value of the
Nussbaum gain used in this case is 2.26 × 10−3, compared with 1.91 × 10−3 in figure 7(a).

The robustness of the adaptive controller is now considered by increasing the length of the Rijke
tube after control at the nominal length has been achieved – the length of the tube is increased from 
750 mm to 870 mm. Results are shown in figure 8(a), where control is activated at t = 0.2s, again from
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Figure 7: Experimental results for fixed operating conditions: with (a) N (k) initially updated in the right
direction; and (b) N (k) initially updated in the wrong direction. In both cases the measured pressure
perturbation pc, control voltage Vc and Nussbaum gain N (k) are shown.

5 k starts from zero here (i.e. k(0) = 0), which is true for all three experiments.



within the limit cycle. The Nussbaum controller finds a stabilizing gain within approximately 0.4s.
After approximately 18s, the length of the Rijke tube is increased. The Nussbaum gain is no longer
stabilizing for this new length, but the controller re-adapts and finds a new stabilizing gain. This is seen
more clearly in figure 8(b), which shows a zoomed-in section of figure 8(a). Here the time axis starts
just before the length of the Rijke tube is increased.

5. CONCLUDING REMARKS
This paper has focused on feedback stabilization of thermoacoustic instability in a Rijke tube, and has
done so using two quite different control approaches.

The first control approach is model-based, the focus being on finding low-order models that are
useful for feedback control design. By using the Eigensystem Realization Algorithm (ERA) to find a
balanced low-order model, a state-space model with just eight degrees of freedom is sufficient to
capture the important input-output dynamics for feedback control design purposes.
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Figure 8: Experimental results for varying tube length (N (k) initially updated in the wrong direction): (a) tube
length increased at approximately 18s; and (b) zoomed-in plot of the controller’s re-adaptation following the
change in length. Legend same as figure 7.



The second approach employs adaptive control, which does not require a model, but instead requires
that the system meet some general properties. Lyapunov-based adaptive control requires that the sign
of the high frequency gain of the system is known: the focus here was on implementing an adaptive
controller that did not require this information, and this was achieved using a Nussbaum gain.

It is encouraging that the model-based controller brings with it a similar level of robustness to
changes in operating conditions as the adaptive controller, even though no adaptation of the controller
takes place. The approach is also well-suited to real engine environments, where multiple sensors and
multiple actuators may be required, since the state-space model (eqn (7)) admits multiple inputs and
multiple outputs easily. A model of the system is required, however, and acquiring this can be
challenging, particularly for an unstable system. The adaptive controller requires no such model, which
is clearly an advantage. It does require that the system meet certain requirements, however, and these
in themselves can be restrictive. The Nussbaum gain considered goes some way to reduce what must
be known about the system, but makes the controller more complex, and may give rise to unnecessarily
large control gains, which is to be avoided. (Although Appendix C goes some way to alleviate this.)

The order in which the two control strategies were presented may suggest that, in the authors’
opinion, the adaptive controller represents a progression from the model-based controller. This is not
the case. What is clear is that both strategies bring with them their own advantages and inconveniences,
and one must consider carefully the physical system at hand when choosing a feedback control strategy.
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APPENDIX A. THE EIGENSYSTEM REALIZATION ALGORITHM
This section describes how the Eigensystem Realization Algorithm can be used to form balanced
reduced-order models from input-output data of high-dimensional systems.

The starting point for the ERA is the generalized αq × βp Hankel matrix composed of the system
Markov parameters:

(A.1)

where α and β are integers satisfying βp ≥ n and αq ≥ n, which ensures that H(k − 1) is of rank n. Recall
that p is the number of inputs, q is the number of outputs, and n is the system order. The Markov
parameter Yk ∈ Rq × p for time index k is defined as 

Yk � CAk−1B. (A.2)

See Juang [39] or Illingworth et al. [46] for how these Markov parameters can be found from input-
output data. Setting k = 1 for the Hankel matrix, substituting in eqn (A.2) for the Markov parameters,
and decomposing into two matrices, we find that

PαQβ, (A.3)

where Pα ∈ Rαq × r is called the observability matrix and Qβ ∈ Rr × βp is called the controllability
matrix of the high-order system of order r. The concepts of observability and controllability are
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important for forming reduced-order models. The observability matrix Pα is linked to the
measurement of the state: a system is said to be observable if it is possible to recover its state from
measurements of its inputs and outputs. The controllability matrix Qβ is linked to the manipulation of
the state: a system is said to be controllable if any state x can be reached in a finite time when a
suitable input is used.

Since the Hankel matrix H(0) is composed of the Markov parameters in eqn (A.1), we see from eqn
(A.3) that the Markov parameters are closely related to these observability and controllability matrices.
For more details on the notions of observability and controllability, see Juang [39].

We now look at using the Eigensystem Realization Algorithm to form a reduced-order model 
of order n < r. The observability and controllability matrices of the reduced-order model will satisfy
P T

αPα = QβQT
β. The reduced-order model is then called balanced, and this means that the input-output

dynamics of the system that are important for feedback control are properly accounted for.
Factorizing the Hankel matrix H(0), which has rank r, using the singular value decomposition, and

truncating to order n < r, we have

(A.4)

Rn and Sn are made up of the first n (orthonormal) columns of R and S respectively. Σn is a rectangular
matrix, Σn = diag = [σ1 σ2 · · · σn], with σ1 ≥ σ2 ≥ · · · ≥ σn > 0, the first n singular values of H(0).
Examining equations (A.3) and (A.4) as a whole, we can write

(A.5)

One possible choice for the decomposition of H(0) is then P α = RnΣn
1/2 and Qβ = Σn

1/2 Sn
T, and this

choice makes both P α and Qβ balanced in the sense that

(A6)

P T
αP α and QβQ T

β are called the observability and controllability Gramians of the reduced-order
model, and are equal and diagonal by eqn (A.6)

The system matrices B and C can then be found from Qβ and P α in eqn (A.3). To find the A matrix,
let k = 2 in eqn (A.1) and use eqn (A.5) to give

from which A can be found. For a more rigorous treatment of the ERA, see Juang and Pappa [38] or
Juang [39].

The state-space model (7) given by the ERA is balanced: the controllability and observability
Gramians are diagonal and equal by eqn (A.6), and this means that the dynamics of the system are
properly taken into account. Furthermore, an upper bound for the error in the reduced-order model can
be derived. Let Pn denote the transfer function of the reduced-order model of order n, and let Pr denote
the transfer function of the full system of order r. Then the H∞-norm of the error satisfies

,

(‘twice the sum of the tails’), where σj are the Hankel singular values of Pr.

APPENDIX B. PROOF OF CLOSED-LOOP STABILITY USING A NUSSBAUM GAIN
We consider the first order system (11). For the more general case of minimum phase, n* = 1 systems,
see [55]. The first order system (11) can be written in the time domain as
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Suppose the adaptive control law

is used, where N(k) is a Nussbaum gain.6 The resulting closed-loop system is given by

(B.2)

(B.3)

We want to find a Nussbaum gain that will guarantee closed-loop stability without knowledge of
sgn(g0). To study the closed-loop stability of the system, we introduce an indicator function,

(B.4)

Evaluating along solutions to (B.2) gives

Integrating over time t (using k(0) = k0 and introducing σ = k(τ)), we have

(B.5)

(B.6)

and so

(B.7)

Suppose that the Nussbaum gain N(σ) satisfies the two conditions

(B8)

.

Seeking a contradiction, suppose that k(t) → ∞ as t→ ∞ (from (B.3), k(t) is monotone non-decreasing).
Since the Nussbaum gain (B.8) takes arbitrarily large positive and negative values as k(t) → ∞, we
derive a contradiction at (B.7). Therefore k(t) must be bounded. From (B.3), this is equivalent to y(t) ∈
L2[0, ∞). Then from (B.2) ∈ L2[0, ∞). Finally, lemma 2.12 of Narendra and Annaswamy [51]
shows that y(t) is guaranteed to converge asymptotically to zero.

A similar proof can be used for the Lyapunov-based adaptive controller (eqn (12)) by replacing N (k)
by −k(t) in eqn (B.2), setting (t) = sgn(g0)y

2(t) in eqn (B.3), and following the same procedure.
(Although this is a departure from the standard proof, which employs a Lyapunov function, as
discussed in §4.) The crucial difference is that this proof requires sgn (g0).
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6 Note the positive feedback convention used here, which is the opposite of that used in eqn (12b). The Nussbaum gain is ultimately insensitive to

the sign adopted, and we adopt a positive convention for simplicity.



APPENDIX C. ADAPTATION RATES FOR THE NUSSBAUM GAIN
The adaptation rates γ and µ, introduced into the adaptive controller’s updating rule (14a) and control
law (14b–14c) in §4.2 are now explained in more detail, together with details of how they are chosen.

Choosing γ
Looking at the updating rule (14a), one can see that γ sets the rate at which k adapts. Therefore γ can
be set by specifying the desired speed of adaptation of k [58]. If k starts at zero, this corresponds to 3τn
for a 5% band around the set point (where τn is the period of the unstable mode):

and therefore

,

where k* is the value of k for which closed-loop stability is achieved, and is a characteristic value
of pc. The value of k* will depend on whether the Nussbaum gain is initially updated in the right
direction. To get around this we assume that the Nussbaum gain is initially updated in the right direction –
then k* will be similar in size to N*, i.e.

.

If the Nussbaum gain is initially updated in the wrong direction instead, then this simply means that the
controller will take longer to reach k* (and therefore N*) and achieve closed-loop stability.

Choosing µ
Looking at the Nussbaum gain (14c), one can see that µ dictates, via the cosine term, exactly when N (k)
will switch sign. The Nussbaum gain N(k) provides closed-loop stability by providing a gain that is 
(i) large enough and (ii) of the right sign. Furthermore, N(k) only needs to switch sign once (if at all).
Therefore it suffices to ensure, via µ, that N(k) sweeps over a sufficiently large gain before it switches
sign. This will allow the controller to ‘try’ a big enough gain before N(k) switches sign.

We can ensure that this happens by specifying the turning point of N(k), that is by specifying the
value of N(k) at which 

We already have an expression for (14a) this is zero when pc is zero. Therefore we are interested in
. From (14c),

,

where kt is the k for which . Letting , we have

X tan X = 4,

which we can solve for X. We need two equations for the two unknowns µ and kt: the second
equation comes from specifying Nt, the value of N(k) for which , i.e.
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Then kt and µ can be found using

Therefore to choose the two adaption rates γ and µ, it suffices to have an estimate (to order of
magnitude accuracy only) of N*, τn and . In addition, Nt needs to be chosen so that Nt > |N*| is
guaranteed.
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