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Abstract

High fidelity, low dimensional model and control development for complex flow fields
is a challenging yet highly rewarding research topic. The systematic modeling and
control approach developed in this paper is applied to suppress optical distortions caused
by large scale density variations in a free, unstable shear layer behind a backward facing
step. Simulations of an unforced and open-loop forced shear layer, based on the
compressible Navier-Stokes equations, are used to compile a flow state database to
formulate a linear basis set using proper orthogonal decomposition. It is shown that
nonlinear auto regressive exogenous models accurately predict the fundamental behavior
and forcing interaction of the POD time coefficients. This low dimensional model allows
for simulation of open and closed loop dynamics, prediction of future flow states, and is
ultimately utilized to develop feedback control algorithms. Feedback results using
nonlinear, adaptive regulation of the vortex shedding phenomenon indicate that a 35 per
cent reduction in the optical aberrations is achieved.

1. INTRODUCTION

The performance of airborne optical systems is severely hampered by beam distortions due to the
unsteady density variations in the air flow over the optical aperture, especially when looking back (11,
18). These density variations (ρ(x,t)) translate into optical beam distortions via the index-of-refraction
(n(x,t)),

(1)

where KGD is the Gladstone-Dale constant. The optical path length is consequently affected by the
varying index of refraction through the shear layer as in,

(2)

An initially collimated wave front that passes through a variable density field will be distorted by the
spatial and temporal variations, resulting in reduced focus and beam intensity in the far field. These
distortions away from the ideal diffraction limit can greatly reduce the usefulness of an airborne optical
system. For convenience, the wave front distortions are typically expressed as the optical path difference,

(3)

where it is assumed that the beam extends in the y-direction and the overbar denotes the average over
the aperture.

Numerous experiments by Jumper and his coworkers investigated many aspects of these aero-
optical flow fields, ranging from free shear layers to an idealized, two-dimensional turret and a three-
dimensional turret (9, 11, 12, 17, 18, 23, 29, 30, 31, 36, 42). The free shear layer forming behind such
a turret, due to its natural instability, forms large, almost periodic structures. These structures are the
source of density variations and therefore optical aberrations. Jumper and his coworkers investigated
the performance of a variety of vortex generating devices and found significant changes in the optical
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distortions of a beam propagating through the shear layer. While these passive flow control devices
have a beneficial effect on the flow field in terms of the predictability of the optical aberrations,
changing flow conditions (e.g. flow velocity) cannot be addressed with these devices. Feedback flow
control provides a promising extension to passive control that can take these variations of the flow
parameters into account by instantaneously sensing the flow state and adapting and actuating the flow.
The goal of feedback flow control is to provide a method to modify the flow field such that the most
optically detrimental coherent structures are mitigated over a range of flow conditions. Due to the
close coupling of the density field and the index-of-refraction, the density field is analyzed directly,
keeping in mind that the optical aberrations are linearly dependent on the path integral of the density
field and hence successfully controlling the density fluctuations will also mitigate the optical
distortions.

Feedback flow control design strategies can be divided into two main categories: those that use a
model and model free approaches. The model free approach utilizes adaptive control techniques to
feedback global flow variables. Adaptive control varies open loop parameters to produce desirable
effects in the flowfield. Typically the model free approach is used in an experimental setting because a
large amount of time is necessary for control adaptation (3). Control laws such as adaptive extremum
seeking controllers have been shown to suppress combustion instabilities by varying the phase of an
open loop acoustic signal (20, 22). Similarly this adaptive method has been used to control the flow
separation on a NACA4412 airfoil with a flap to achieve increased lift at high angles of attack (3). It
could be argued that the model free approach is less likely to reach desired performance margin and
control goals; however, it is relatively simple to implement.

Alternative methods entail using reduced order modeling procedures to formulate low dimension
numerical models for controller development. Model flow control techniques do vary in the amount of
retained fluid dynamics inherent in the model. For example black box models which are trained online
or offline relate input/output dynamics of an experiment or computation. Williams et al. (41) used the
prediction error method to identify a first order state space model to increase lift on a semi-circular
wing. A PID controller designed for the trained model showed desirable gust alleviation on a three
dimensional wing. A step up in retained fluid dynamics in modeling approach is the Galerkin model. A
truncated Proper Orthogonal Decomposition (POD) spatial mode set is projected onto the Navier
Stokes equations, resulting in a set of quadratic ordinary differential equations (4, 14, 25, 33, 37). Due
to the truncation of the mode set the resulting equations are mathematically unstable because of the
unsatisfied boundary conditions (28). Also, the actuation is added through the body force term of the
Navier-Stokes which is linearly superimposed at a given location in the flow field. Nonetheless,
Galerkin models provide insight into the flow physics and basic controller design. Noack et al. (24) and
Ahuja et al. (1) have addressed the mathematical stability issue of the Galerkin model and successfully
controlled a three dimensional cylinder wake and a two-dimensional wake behind an inclined flat plate,
respectively.

The focus of the current research is to design adaptive control algorithms based on reduced order
models (ROMs). Figure 1 shows an overview of the feedback flow control design approach. The
control design approach taken in this work relies heavily on the multidisciplinary combination of
current methodologies in computational fluid dynamics as well as control theory. As shown in Figure
1, a database of flow states is first compiled from the results of unforced as well as open-loop forced
simulations. For the open-loop simulations, the disturbances are introduced by periodic blowing and
suction slots at critical geometrical locations. The frequency and amplitude of the forcing signal are
varied to probe the flow response throughout a given forcing parameter space. The resulting forced and
unforced flow state database is numerically reduced using POD, which yields an optimal linear
representation of the flow over the forcing parameter range. The computed POD spatial modes and time
coefficients are then scrutinized further for controller development as well as flow state estimation.

POD modes and their adjoint amplitudes for a forcing scenario provide important information about
the interaction of the forcing input with the flow field. These interactions are modeled through the time
coefficients using system identification techniques. The reduced order model developed purely from
open loop and unforced flow information is shown to accurately simulate closed loop behavior as well
as predict off-design flow scenarios. An adaptive feedback regulator is applied to the reduced order
model to suppress density abberations present in the shear layer. As seen in Figure 1 each step in the
design process provides for the possibility of iterative adjustments of parameters to increase model and
controller performance (paths 1 through 4). The individual blocks in this flowchart will be described in
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the following sections as a feedback control law is designed for the flow over a backward facing step.

2. OPEN-LOOP SIMULATIONS

The framework of this control design approach is based upon the use of open-loop numeric simulations.
The simulations were performed using COBALT from Cobalt Solutions, LLC, a commercial
unstructured finite-volume code developed for the solution of the compressible Navier-Stokes
equations. The basic algorithm is described in (40), although substantial improvements have been
subsequently made. The numerical method is a cell-centered finite volume approach applicable to
arbitrary cell topologies (e.g, hexahedra, prisms, tetra-hedra). The spatial operator uses the exact
Riemann Solver of (15), least squares gradient calculations using QR factorization to provide second
order accuracy in space, and TVD flux limiters to limit extremes at cell faces. A point implicit method
using analytic first-order Jacobians is used for advancement of the discretized system. For time-
accurate computations, a second order accurate method with Newton sub-iterations is employed. For
parallel performance, COBALT utilizes the domain decomposition library ParMETIS (19) to provide
optimal load balancing with a minimal surface interface between zones. Communication between
processors is achieved using Message Passing Interface (MPI), with parallel efficiencies above 95% on
as many as 1024 processors (16). For turbulent simulations, numerous turbulence models are available
in COBALT. For the current investigation, since the unsteady motion of the large coherent structures
in the flow is of paramount interest, Delayed Detached Eddy Simulations (DDES) were performed (39).

The geometry under investigation is a backward facing step with a step height of H � 0.15 m, and
a ramp length LR � 0.85 m. This geometry was chosen to be consistent with an experimental model
used and tested in a subsonic wind tunnel. The domain length was Lx � 4 m downstream of the step.
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Figure 1: Flowchart of the feedback control development process.
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Figure 2: Instantaneous isosurface of flow structures and associated OPD for various forcing conditions.



The modeled wind tunnel height is Ly � 0.8 m. Initial three dimensional simulations (34) showed that
the OPD is directly affected by the large, spanwise, coherent structures as seen in Figure 2. In addition,
the OPD data corroborate that the structures which cause the largest optical aberrations are nearly two-
dimensional. Figure 3 shows results from an unforced simulation in two-dimensions. The simulations
show shear layer structures very similar to the ones observed in the three-dimensional simulations as
well as some of the nonlinear dynamics such as vortex pairing. For this reason a two-dimensional
simulation and modeling approach is chosen to investigate feedback control of the OPD.

The flow conditions were defined by the inflow Mach number Ma � 0.3 and sea level standard
atmospheric conditions. The Reynolds number based on the step height was Re � 106; these flow parameters
resulted in a Reynolds number of Reθ ≈ 4500 based on the momentum thickness of the separating boundary
layer; the time step was chosen as ∆t � 10�6s to capture the resolved turbulent time scales.

Figure 4 shows the two-dimensional grid. The grid spacing at the step was defined to be ∆x � 0.1
mm. This grid contains approximately 58,000 nodes and 90,000 elements. Grid clustering was used on
the bottom wall and in the region of interest in the free shear layer. To build a database of flow states
that would be used to define the reduced order model for the flow field, unforced simulations were
performed first. In a second step, open-loop active flow control (AFC), which in the simulations was
implemented using an externally controlled blowing/suction boundary condition (Figure 4(b)), was
studied and the data was added to the development cycle of the database. These forcing cases were
particularly valuable for describing the transient flow features present during the initial development of
the open-loop forced shear layer as well as the vortex pairing that occurred when forcing was initiated.
The results from the simulations provided a comprehensive database of the free shear layer, which was
used to develop feedback control strategies as well as to compare the effectiveness of feedback control
applied to the aero-optics problem. The magnified view of the step edge is shown in Figure 4(b) which
shows the blowing/suction slot at the trailing edge of the step at an angle of 45�. The boundary layer
grid spacing was chosen such that the final y� value at the step was y� ~– 1.

From the unforced data it was determined that the vortical structures in the shear layers naturally occur
at a frequency, Fn ~– 400Hz at a downstream distance, x/H � 2. For the open-loop forcing cases, only
periodic inputs with varying frequency and amplitude were considered. The range of forcing parameters was
chosen by perturbations to the natural shedding frequency of the flow at a range of experimentally
achievable actuation limits. The blowing and suction actuation frequency ranged from Ff � 400Hz to Ff �
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Figure 3: Instantaneous distribution of spanwise vorticity and density in a two-dimensional simulation.

(a) Spanwise vorticity. (b) Density.

(a) 2D Grid (b) B/S slot

Figure 4: a)Two-dimensional CFD grid. b) Grid at the step showing the blowing/suction slot.



1000Hz and the amplitude between A/U� � 0.01 and A/U� � 0.3, where U� is the freestream velocity and
A is the velocity through the blowing/suction slot, resulting in the time dependent blowing and suction
velocity uf(t) � Asin(2πFft). A summary of all the computed cases is given in Table 1.

3. REDUCED ORDER MODEL

3.1. Numerical Reduction

The simulations in Section 2 provide a database of flow states over the forced and unforced parameter
range. The flow solution database is denoted by Ω ∈ Rnt�nx where nx is the number of spatial locations
(typically on the order of 106) and nt is the total number of time steps (typically on the order of 103).
This database is governed by the compressible Navier Stokes equations,

(4)

where x is a vector spanning the finite dimensional state space, time (0 � t � tf), input (u) and f() is a
time variant, nonlinear function. The dataset Ω is of very high order and it is not feasible to work with
this data directly for controller design. A linear basis representation by means of proper orthogonal
decomposition (POD), also known as the Karhunen-Loeve process or principal component analysis,
has been widely accepted as an appropriate scheme to reduce the dimensionality of the dataset and
extract pertinent flow features (4). In particular, the method of snapshots (38) allows for efficient
decomposition into spatial modes and time coefficients. The eigenvalues and eigenvectors of the spatial
correlation matrix give the linear basis representation. Mathematically this operation is analogous to the
singular value decomposition

(5)

where U is an orthonormal matrix with dimension nx � nx, V* is also an orthonormal matrix with
dimension nt � nt, ∑ is a diagonal nx � nt matrix in which the nt (because typically nt � nx) singular
values are arranged in decreasing magnitude on the diagonal. The singular values of Ω are also the
eigenvalues of ΩTΩ. Next, define Q ≡ U∑ in Equation 5, which yields Ω � QV*. This can be written
in summation form, as shown in Equation 6, such that qi is the ith column of Q; likewise, vi is the ith

column of V,

(6)

Equation 6 is still an identity, i.e. no approximations have been introduced. In Equation 6 the ith

temporal coefficient, ai(t), is exactly equivalent to the ith column of Q. Likewise, the ith spatial mode,
ϕi(x,y), is represented by the ith row vector of V*. The system Ω can then be written as Ω � ∑m

i�1
ai(t)ϕi(x). To reduce the order of this system, m� � m is chosen and the decomposition becomes

(7)

where now the right hand side is an approximation of Ω. Because the singular values are related to the
POD mode energy and are ordered by magnitude (σ1 	 σ2 	 … 	 σn), the dominant spatial and
temporal modes appear first in the matrices U and V, respectively.
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Table 1: Summary of computed forcing cases.

400Hz 600Hz 800Hz 1000Hz
A/U∞ = 0.3 x x x x
A/U∞ = 0.2 x x x x
A/U∞ = 0.1 x x x x
A/U∞ = 0.05 x x x x
A/U∞ = 0.01 x x x x



The above decomposition is a valid approximation for large, coherent structures prevalent in
periodic flow fields. While many flavors of POD exist, all methods hinge on the eigen-solution of
the spatial correlations in time, but effectively differ by mode organization (sorting) and truncation
method. For example, traditional POD modes are organized by singular value magnitude (or energy
content) and the truncation location is determined by an acceptable energy content in the retained
modes. In contrast, balanced POD (BPOD, (32)) organizes modes based on the controllability and
observability gramians and truncation is determined by scrutinizing Hankel values of these
gramians.

The added complexity in determining an appropriate POD method for the purpose of feedback flow
control design is in capturing the interaction between the forcing input and the flow response within the
truncated mode set. During an open-loop forced simulation the flow undergoes some transient
development, which results in the spatial modes (ϕi(x)) evolving over time. To capture this slow
transient development, Siegel et al. (35) devised a strategy called Double Proper Orthogonal
Decomposition (DPOD) to model the forced wake behind a circular cylinder. In DPOD, POD is used
first to capture the almost periodic flow behavior and a second time to quantify the slow transients of
the spatial modes. The second decomposition represents the spatial mode fluctuations over time which
can capture forcing-flow interaction. The DPOD decomposition is written as Ω � ∑m�

i�1 ∑n�
j�1 aij(t)ϕij(x).

These POD methods as well as various spatial domains, datasets in frequency/amplitude parameter
space, and time steps were studied to determine an appropriate mode set for the shear layer behind the
backward facing step. In the end, while BPOD and DPOD showed marginal improvements in the model
for certain cases, the traditional method of snapshots and truncation via energy content were used to
compute the linear basis representation seen in Figure 5.

The spatial modes shown in Figure 5 represent the large coherent structures of the Kelvin-Helmholtz
vortices. The spatial domain focused on the shear layer and therefore the four mode representation does
neglect higher order turbulent effects apparent in the recirculation zone. However, since the OPD is
most affected by the flow structures with the largest density variations, this selection was deemed
appropriate for the investigation of mitigation strategies for optical distortions due to a free shear layer.
Figure 6 shows the temporal behavior of the first 2 pairs of fluctuating spatial modes. As shown for the
forcing case of f � 600Hz, A/U∞ � 0.1 (see Table 1), the flow responds very nonlinearly to the forcing
as evidenced by the temporal coefficients. The start up transient is apparent between 0s 
 t 
 0.13s
and the ending transient from 0.25s 
 t 
 0.33s in all four modes. The nonlinear periodic behavior of
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Figure 5: Four spatial mode set ϕi computed by method of snapshots. As seen modes a2 and a3 show a
larger wavelength than modes a4 and a5. Note: Mean flow (a1) was subtracted before POD process.



the temporal coefficients represents the state of the flow field; in combination with the spatial modes,
the large coherent structures of the shear layer can be represented by the four mode reduced order
model.

3.2. System Identification

Nonlinear, autoregressive exogenous (NL-ARX) system identification techniques are implemented to
model the behavior of the POD time coefficients over a range of unforced and open-looped forced flow
state dynamics. A state space representation of the flow field is given by

(8)

where x ∈ Rnx, to 
 t 
 t1, and u(t|F,A) � Asin(2πFt). Eqn. 8 provides the basis for applying system
identification tools. To understand the time evolved behavior of the mode amplitudes the derivative in
time must be computed,

(9)

The second term, ai(t, u)ϕ
.
i(x|u), vanishes since ϕ is time invariant, so all of the nonlinearities of the

system are contained within the evolution of the mode amplitudes a
.
i(t|u). The system is represented in

state space form as

(10)

where G(a(t, u)) and L(xs) are unknown, nonlinear functions. Referring to Figure 1, the control design
approach splits into two separate paths. One is the formulation of a reduced order model, a(t, u) �
G(a(t, u)), and the other is the development of surface based flow state estimators, â(t, u) �
ϕ(x|u)L(xs). Both model and state estimator are necessary for a feedback control simulation.
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Figure 6: POD mode amplitudes (ai) of mode set for off design simulation case f � 600Hz, A/U∞ �



A mathematical model which represents the time coefficients of the numeric approximation over the
open-loop forcing parameter space, u(t|F,A), needs to be developed. NL-ARX system identification
techniques allow for prediction and simulation of the POD mode amplitudes. NL-ARX models are not
limited to single-input single-output systems. NL-ARX are strictly causal systems, depending on
current and past time histories of chosen inputs. For the development of a NL-ARX model, a regression
vector is formed such that the previously simulated mode amplitudes and current and past actuation
inputs are compiled in a vector,

(11)

This regression vector, θ(t), serves as the input to the low dimensional NL-ARX model. A nonlinear
function, G, relates the regression vector to the time coefficient at the future time k � 1, such that âk�1
� G(θ(k)). Typically, G is developed using Hammerstein-Wiener methods, Volterra kernels, neural
network models, etc. Once a model structure is chosen, the simulation or prediction error is minimized
over a training data set in a least squares sense.

Previous feedback flow control work of the authors used artificial neural network autoregressive
exogenous (ANN-ARX) systems to identify the dynamic behavior of the time coefficients in the forced
cylinder wake (7, 8, 35). This nonlinear system identification technique has been argued to be a
universal approximator, capable of representing any type of data trend (26). However, some inherent
problems of ANN models exist. First, there is no straightforward method for designing the network,
including determining the number of hidden neurons, the number of layers, or the parameters of the
regression vector. Furthermore, training relies heavily on trial and error to find a combination of
parameters that yields acceptable results. Second, the convergence of these networks depends strongly
upon the initial (usually random) weights in the weighting matrices. This can lead to drastically
different results when training a single network with different sets of parameters. Third, a properly
trained network will behave as a black box from which little mathematical and physical insight can be
gained. And finally, training times are extremely long due to multimodal error surfaces which tend to
trap the solution in local minima. This also contributes to the vastly different network parameters
obtained from the random initial network weights.

A powerful basis function for non-linear model development is a wavelet; they are known for their
ability to compress, decompose, and approximate scientific data sets accurately and efficiently. Wavelet
basis functions are used in many technical fields including image processing, edge detection, large
scale monitoring processes, transient detection, etc. Mathematically, the mother wavelet, Ψ, can be
written as

(12)

where u denotes the shift or translation and s the dilation or frequency content of the wavelet basis
function. In the current modeling approach, wavelets were used as transfer functions to create a
WaveNet (WN). These wavenets were first introduced by Zhang et al. and have been applied to many
areas such as functional approximation, system identification, adaptive control, and nonlinear modeling
and optimization (5, 21, 43, 44). The WN is typically initialized using a dyadic wavelet decomposition
(27). Multiple techniques exist to design the architecture of such wavenets. One technique employs the
wavenet as a preprocessing filter for the nonlinear ANN identifier. An example of this type of network
is the identification of transients in power signals (2). Another approach is to replace the existing
transfer function of a neural network (usually sigmoid or signum functions) with a radial basis function.
This approach was taken in the current work to design and train wavenets for feedback flow control
applications. The fundamental WN structure used to model the system in given in Equation 13,

(13)

where r is the mean of the regression vector, P is the linear subspace, L are the linear weights, Q is the
nonlinear subspace, asi are the scaling block coefficients, bsi are the scaling block dilations, csi are the
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scaling block translations, awi are the wavelet block coefficients, bwi are the wavelet block dilations, cwi
are the wavelet block translations.

Moreover, Ψs(x) is the scaling function. Here, the scaling function was chosen to be a class of radial
basis functions such that

(14)

Likewise, Ψw(x) is the wavelet basis, which is also a radial basis function in the form

(15)

The linear and nonlinear subspace matrices (P and Q, respectively, in Equation 13) are initialized by a
principal component analysis based on an optimal representation of the system linearities in the linear
block as well as the nonlinear block. Given a set of initial parameters for the WN, the model is simulated
and the global error of the training data is determined as aj(t)–âj(t). The parameters of the WN are
subsequently updated via a gradient descent method to minimize the cost function Jθ � || f̂(t) � f(t)||2.

Just as with POD data selection, NL-ARX requires data selection, i.e. the selection of forcing cases,
for model development. A total of 12 open-loop cases, all of which contained starting and ending
transients from the unforced flow state and back to it, were computed to understand the influence of
actuation with varying frequency and amplitude on the flow. The results showed that the time
coefficients reacted almost linearly to the blowing and suction amplitude, i.e. the response of the mode
amplitudes, aj(t), scaled linearly with amplitude input. In contrast, the flow response was highly
nonlinear with respect to the forcing frequency. Thus, the three training data sets highlighted in Table 2
were chosen to provide a basis for the WNARX model. The case Ff /Fn � 1, A/U∞ � 0.10 was chosen
to be the validation case for the model.

Table 2: Summary of cases. x: POD database, ✓: WN training cases, o: validation case.

400Hz 600Hz 800Hz
A/U∞ = 0.1 ✓ o ✓

A/U∞ = 0.05 x ✓ x
A/U∞ = 0.025 x x x
A/U∞ = 0.0125 x x x

The WN model has four outputs which are the estimated mode amplitudes. The inputs are formed by the
regression vector in (11). A regression vector is selected for each simulated output of the model. The
structure of this vector is chosen by coupling mode interaction and external input. A summary of final
parameters for the dynamic model is presented in Table 3. As shown, modes 1 and 2 are coupled, but
decoupled from modes 3 and 4. The coupling of these mode pairs is due to the traveling wave character
of the structures in the flow, which can be represented by two modes and their time coefficients that are
shifted in space and time, respectively.

Table 3: Summary of parameters chosen for the WNARX model.

Mode ai Wavelets Regressors
a1 a2 a3 a4 u

a1 2 4 1 0 0 1
a2 21 1 5 0 0 1
a3 10 0 0 4 2 2
a4 16 0 0 2 4 2

The WNARX model was validated for an off design flow case for which the forcing signal was turned
on at simulation time t � 0s, at which point the flow goes through a transient before locking into the
forcing frequency. The forcing was then turned off at t � 0.025s (corresponding to 15 forcing periods)

Ψw
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to reestablish the unforced flow state. As shown in Figure 7, the model captures the lock-in region
(0.01s � t � 0.03s) of the periodic forcing very well. Once the forcing was turned off at t � 0.025s,
the model accurately predicted the type of nonlinear signal in the unforced flow. Expecting an exact
replication of the transients and the unforced time coefficients is unrealistic since the signal was
extremely nonperiodic. However, it is important to note that the model of the unforced flow does not
decay to zero over time. This indicates that there is a periodic attractor to the nonlinear function for the
WNARX system. The similarities in periodic trends furthermore suggest that the attractor is near the
solution of the unforced state.

4. FEEDBACK CONTROL

4.1. Adaptive Regulation of Model Simulation

Developing the components for a closed-loop simulation is a multi-step iterative process as shown in
Figure 1. The model developed in Section 3 provides accurate predictions of mode amplitudes
encompassing unforced and forced flow states within a forcing frequency and amplitude parameter
range. However, it remains to be seen if the model is capable of adequately simulating the highly
nonlinear dynamics expected for the closed-loop case. To close the loop a non-linear adaptive
regulation feedback scheme is chosen. Adaptive control minimizes the number of simulations needed
to precondition fixed gain control methods. Also adaptivity allows for compensation of model/CFD
uncertainties. The equations describing this variation of direct adaptive control are,

(16)

where Ge is the adaptive gain matrix, γe is the adaptability weight, and ey is the error between output
and desired reference signal, ey � â – aref.

For multi-input multi-output (MIMO) systems, ey and γe are matrices of size nout � nin. Also, the
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Figure 7: Off design validation of the four mode WNARX model for flow case of Ff � 600Hz and A/U∞ �

0.1. WNARX output (-), POD model (- -).



gain matrix is of size nin � nout. The time derivative in equation 16 must be approximated numerically,
because no analytic solution exists. The fourth order Adams-Bashforth method,

(17)

was utilized to determine the gain matrix derivative. The WNARX model allows for very quick
simulation times (approximately two orders of magnitude faster than CFD simulation times), so that
closed loop studies can be carried out relatively quickly. The feedback parameters associated with this
control strategy are i) POD mode used for feedback, and ii) adaptability weights, which are bounded on
the interval [0, 1]. Stability of direct adaptive control for linear systems with extension to nonlinearity
and disturbance rejection are proven in (13). Different combinations of modes and their derivatives were
fed back along with preconditioned adaptability weights until successful model results were achieved.

After the model feedback studies discussed above, it was determined that the POD mode amplitude a1
and its time derivative, a

.
1, was the appropriate mode choice to regulate the modal amplitudes as shown in

Figure 8. The derivative of a1 was computed by an implicit Euler approximation. Because this can be a poor
approximation of the derivative and its susceptibility to noise, a moving average lowpass filter was added
to smooth the estimated derivative. Feedback of states a1 and a

.
1 allowed for significant suppression of limit

cycle behavior of the mode amplitudes as shown in Figure 8. The idea was that the reduction of the limit
cycle behavior in lower frequency modes would also reduce the vortex shedding phenomenon behind the
step, and thus reduce the density abberations observed. Note that by controlling mode 1, mode 2 was
controlled as well due to the traveling wave character of the shear layer structures. In this simulation, the
open-loop forced flow was used as the initial condition for the closed loop simulation to create periodicity
in the flow and to improve startup performance of the controller when the loop was closed. Figure 8 shows
the time coefficients for the four mode model. Periodic forcing was applied for t � 0.015s, at which point
the closed loop control was switched on for a time period of 0.015s � t � 0.035s, when the control is turned
off and unforced flow redeveloped for t 	 0.035s. As shown in the figure, the controller performs well,

« ~ ,G
G G

t
e e e ee

en en
y y y yn n n n−

− + ∇ + ∇ + ∇





+
− − −

1 2 31

2

5

12

3

81 2 3∆

Casey Fagley, Jürgen Seidel, Thomas McLaughlin 11

Volume 3 · Number 1 · 2011

Figure 8: Feedback results using adaptive feedback control. Periodic forcing for 0s � t � 0.015s, closed
loop simulation for 0.015s � t � 0.035s, and unforced simulation for t 	 0.035s.
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reducing the amplitudes of the time coefficients to approximately 35 per cent of the unforced state.
As a final performance metric, the OPD for a beam passing through this flow field was computed using

Equations (1)-(3). For the 2D simulations, the aperture size was 1.5 
 x/H 
 2.5 with unit width. The
OPD at the point of interest, x/H � 2, is plotted in Figure 9, which shows that the OPD was drastically
reduced during the closed loop portion of the simulation, both in comparison to the periodically forced
flow and to the unforced flow.

4.2. State Estimation

4.2.1. Sensor Placement
To incorporate the developed adaptive regulator within a CFD simulation, the flow state (i.e. current
mode amplitudes) of the flow must be estimated. A surface based estimation scheme was used to
determine the current flow state. The main idea is described in (10). The state estimator relates an
array of surface mounted sensor signals, defined as p(xs,t), to the flow state which is modeled by
the time coefficients of a POD truncation (a f

j(t) in equation 7) (Note: the superscript f designates
that the parameter is in the flow, likewise the s superscript designates that the parameter is on the
surface). The goal was to incorporate an experimentally feasible number of surface mounted
sensors (e.g. pressure transducers) and through mathematical modeling techniques formulate a
mapping of sensor signals to the flow state. Having access to the current flow state allows for state
feedback flowcontrol. The process of developing the surface based state estimator is described
below.

A heuristic approach to sensor placement was used in this study. Locations which are spatially
correlated to desired flow features (e.g. vortex shedding, vortex pairing, etc.) are chosen and defined as
(xs) within the numeric simulation. A surface POD analysis,

(18)

yields surface POD modes ϕ s
p(xs). The locations of the maxima and minima of the surface modes show

where the largest variability of the signal occurs; hence, surface POD modes indicate preferred
locations for sensors (6). The surface POD analysis allows for the reduction of the number of sensors
needed to accurately estimate the surface POD mode amplitudes.

The surface time coefficients (a linear pre-filter) are then computed by solving for ap(t) in equation
(18), given a particular simulation, using

(19)a t p x t xp
s

s p
s

s( ) ( , ) ( ).= −ϕ 1
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Figure 9: Calculated optical path difference (right) at x/H � 2, y/H � 0 for the reconstructed flow field
of the closed loop simulation. Forcing (left) periodically for 0s � t � 0.015s, closed loop for 0.015s � t
� 0.035s, and unforced for t 	 0.035s.



The matrix ϕ s
p(xs) provides the linear subspace, with dim(as

p(xs)) 
 dim(xs), onto which the sensor
signals are projected. The measurement vector is then given by

(20)

which is mapped to the flow state at a given time. The estimator will yield a model for the POD time
coefficients in which the flow state is estimated by the linear or nonlinear mapping of the state vector
through the function G,

(21)

In the CFD simulation of the backwards facing step, the entire wall behind the step was sampled using
47 sensors. The minima and maxima of surface POD spatial modes allows for optimal downsampling of
sensor locations. Figure 10 shows the error in the estimation of mode 1 as a function of the number of
sensors, using three typical estimation methods (Linear Stochastic, Artificial Neural Network, and
Wavenet estimators). The results indicate that all of the methods rapidly converge to approximately their
final performance level with the use of 8 sensors spaced equally between x/H � 0.25 and x/H � 2.

4.2.2. Wavenet Estimator
Three methods of non-linear model estimation were used to relate the sensor information to flow state
estimation. Because the pressure footprint of the flow structures was very small on the surface, linear
estimation methods could not be employed. Also, the recirculation zone did add a large amount of noise
within the surface pressure measurements. The methods evaluated were linear stochastic estimator (LSE),
artificial neural network estimator (ANNE), and wavenet estimator (WNE). Figure 10 shows that the
performance of the WNE is superior to LSE and ANNE. The RMS errors for the flow state estimation were
on the order of five per cent for this sensor configuration, which was equivalent to the error of the estimation
using the full state sensor estimate. More interestingly, the WNE method resulted in only half the error of the
other methods. In Figure 11, the errors for all four modes as computed using the WNE estimator are plotted
as a function of the number of sensors. The plot indicates that while the error increased somewhat for the
higher modes, all modes were converged when using only eight sensors. Figure 11 shows a comparison of
the actual time coefficients computed from Equation 7 with the simulated WNE computed from Equation
13 using the eight sensors. The estimator accurately captures the phase, frequency, and amplitude of the flow
states for the validation case. With this wavenet estimator, the density field could be reconstructed with an
error of less than five per cent of the original flow field using only eight sensors by combining surface POD
(Equation 7) and the flow state estimate (Equation 13) within the forcing parameter space.
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4.3. CFD Feedback Simulation

Once desirable results were achieved with the model in a closed loop simulation, the designed control
algorithm with the corresponding feedback mode combination and weights was applied in a closed loop
CFD simulation to validate both the WNARX ROM system and the adaptive controller.

Hooks for coupling the COBALT CFD code and Matlab® make sensor information from the CFD
simulations available to Matlab® which performs the controller computations. After the actuator output
had been determined, it was passed back to the COBALT simulation using the externally controlled
blowing and suction boundary conditions in the blowing/suction slot.

The controller in the previous section was directly used in the CFD simulation in conjunction with
the state estimator developed in Section 4.1. The feedback controlled simulation proceeded as follows:
First, the Cobalt simulation was advanced one time step. The new data at the sensor locations
(predetermined, see Section 4.2.1) was then passed to the Matlab® state estimator to estimate the POD
mode amplitudes; the estimation was seen to be essentially the same as what the model predicted. These
mode amplitude estimates were then input into the control algorithm, whose output was converted to a
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Figure 12: Flowchart of the feedback control development process.



blowing and suction mass flow rate for the blowing and suction slot. Finally, this information was passed
back to COBALT as a new boundary condition value to be used in the subsequent CFD time step.

After completing the feedback controlled simulation, the density field data was used to compute the OPD.
The OPD results in Figure 13 show that the controller (active for t 	 0.025s) reduces the OPD, but the
reduction was slower than predicted by the WNARX model. This was most likely due to small discrepancies
between the ROM and the CFD simulation results, indicating that the ROM did not quite capture all the
intricate nonlinear dynamics of the flow field which were resolved in the CFD simulation, especially during
the transient period when the controller is first turned on. As shown in Table 3, the model assumed that modes
a1 and a2 are decoupled from modes a3 and a4, which likely affected the transient dynamics. However, the
controller achieved a significant reduction of the mean OPD from ≈ 0.8µm to ≈ 0.5µm and a
reduction in RMS amplitude from OPDrms ≈ 0.7µm to OPDrms ≈ 0.1µm, where

(22)

5. CONCLUSION

The development of a feedback flow control strategy to mitigate the aero-optical aberrations due to the
flow behind a backward facing step has been shown. Using unforced and open-loop forced CFD
simulations, in which blowing and suction was applied with frequencies between Ff � 200Hz and Ff
� 1000 Hz and amplitudes between A � 0.25m/s and A � 1.5m/s, a flow state database was developed
using Proper Orthogonal Decomposition (POD).

A reduced order model (ROM) was built based on the POD time coefficients and used to develop a
wavelet based nonlinear auto-regressive exogenous (ARX) network (WNARX), which described the
behavior of the POD time coefficients. This network system allowed for fast simulation time which
benefited adaptive feedback controller design, which was the ultimate goal. The network model was
able to reproduce training data and validation data to less than one per cent mean squared error.

Based on this model, a controller was developed using the direct adaptive control strategy. The
controller was then tested on the newly developed WNARX model of the shear layer. Once satisfactory
results were obtained, the control algorithm was applied in the CFD simulations. The controller, solely
developed from the model data, resulted in a reduction of the mean OPD of over 35 percent and a
reduction in RMS amplitudes of 80 per cent. Feedback control of the shear layer allows for larger
reduction in the optical properties when compared to current techniques, such as open loop forcing.
Open loop forcing does enforce the periodic vortex shedding of the shear layer and higher frequencies
have been shown to reduce the size of the structures and therefore the OPD, but feedback control really
allows for the control of the vortex pairing to reduce the structure size over a given location.
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