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ABSTRACT
This paper proposes a new approach to control a flow. Controlling a flow consists either
to change its state to another state or to maintain its current state whatever external
disturbances. Here the control of the laminar plane Poiseuille flow is considered. To
estimate the state of this flow, existing control methods rely on a set of limited wall shear
stress measurements. These existing methods suffer from limited observations, from
noisy measurements and from the initialization involved in the observer required to
estimate the flow state. To deal with these issues, this paper proposes a vision-based
control approach. More precisely, by visualizing a fluid flow, dense flow velocity maps
can be computed via optical flow techniques and subsequently used to build an observer-
free closed-loop control law. This approach is formally proven to be of great
improvements for the control of this flow in comparison with existing control
approaches.

1. INTRODUCTION
A turbulent flow presents better mixing properties than a laminar flow. A significant part of the
work carried out in the field of flow control has been dedicated to the control of the transition from
laminar to turbulent states. Delaying, accelerating or modifying this transition can be of great
environmental and economical interests for industrial applications. For instance, Airbus expects in
2020 to decrease by 50% the CO2 emissions, a large part of this decrease being expected from flow
control by diminishing the fuel consumption of their aircrafts through drag reduction [1]. In
contrast, in other application domains such as industrial chemistry, turbulence phenomena are
encouraged to increase heat exchange, to improve the mixing of chemical components and to
enhance chemical reactions.

Flow control can be achieved in two different ways: passive or active control. Passive control
provides a permanent action on the system to control. Most often it consists in optimizing shapes or in
choosing suitable materials such as riblets [2, 3], porous media [4] or hairy coatings [5]. Conversely, in
active control an external energy is required to act on the system, like for example techniques based on
blowing and suction [6] or based on a cylinder of rotation [7, 8]. This type of approach can be seen as
an optimal problem where one has to apply an optimal control law based on a certain cost (minimization
of the drag, minimization of the actuators power, etc.) [9]. However, very often, open-loop control
strategies [10, 11] or even most often forcing strategies [7, 12, 13] are used. These strategies, contrary
to a closed-loop control, necessitate an accurate knowledge of the flow [14, 13], and are not robust to
the variations of unmodelled parameters of the system. As a matter of fact, designing a closed-loop
control law requires the use of sensors that can be at the same time non-intrusive, accurate and adapted
to the time and space scales of the phenomenon under monitoring. Unfortunately, non-intrusive sensors
are hardly available in the real context of control applications. The most commonly used measurement,
obtained from Micro Electro Mechanical Systems (MEMS), is the shear stress at a limited set of
measurement points on the wall [15–17]. A literature review on current and future developments,
experimental use, and limitations of MEMS based shear stress sensors can be found in [18, 19].

Concerning Poiseuille flow, because of the existence of potentially unobservable high transient flow
modes due to these limited observations, a simple output feedback control law cannot be used [15]. That is
why current Poiseuille flow control approaches focus on the use of full state information. The
reconstruction of the full state vector using limited wall shear stress measurements requires the use of an
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observer [16, 20, 21]. However an observer is sensitive to its initialization and converges asymptotically to
the true flow state value. Moreover, because of limited observations, noisy measurements produce noisy
flow state estimated values. Both of these issues are not suitable in the framework of flow control since a
poor and noisy estimated state used in a control law could trigger transition to turbulence in the controlled
flow and therefore might cause the divergence of the control law [22, 23].

To deal simultaneously with the limited observations and the non-intrusive sensing issues, this
paper proposes a vision-based control approach. As far as we know, such an approach has never been
used for flow control issues. By using vision, dense flow velocity fields can be extracted from the flow
image at video rate [24, 25], and used in an observer-free closed-loop scheme to control the flow.
Closed-loop vision-based control is now a well established technique in the robotics and automatic
control communities. Indeed this technique has shown impressive results in numerous complex
contexts such as underwater, medical and aerial robotics [26]. Basically, this technique, also known as
visual servoing, consists in using feedback information provided by a vision sensor to control a
dynamic system [27].

In this paper, we apply the vision-based approach to the regulation of a plane Poiseuille flow
around its steady state. Indeed this flow has become a standard problem to develop flow control
theories [15, 16, 28, 29]: one of the main reason is that the analytical solution to the Navier-Stokes
equations (NSE) of the steady state Poiseuille flow is well-known in fluid mechanics. However, as
will be seen in Section II-C, the modeling of this flow for control issues relies on a conceptual
model [15]. Unfortunately, it is almost impossible, or at least very difficult, to build an experimental
setup based on this model. Therefore, the scope of this paper is limited to a theoretical introduction
of the vision-based control approach for fluid flows. Here we do not deal with practical
implementation issues.

This paper is organized as follows: we first present the control-oriented modeling of plane Poiseuille
flow. We continue by describing in Section III the two classical problems related to the control of plane
Poiseuille flow. In addition we present the existing Poiseuille flow shear stress based control
approaches which include the Linear Quadratic Gaussian (LQG) regulator. We then introduce in
Section IV the fundamentals of the closed-loop control vision-based approach and we apply this
approach to the control of Poiseuille flow in Section V. Since the shear stress based LQG regulator is
the standard effective approach for flow control, in Section VI, we compare the shear stress based LQG
approach with the proposed vision-based approach: we show that the shear stress based LQG approach
is sensitive to measurements noise whereas the vision-based approach is very robust to noisy
measurements. Finally, in Section VII the proposed theoretical results are validated in simulation using
synthetic data sets of spatio-temporal variations of the perturbation velocities.

2. PLANE POISEUILLE FLOW MODELING FOR CONTROL DESIGN
In this section we first present the basics of plane Poiseuille flow, then we recall the boundary control
principle for this flow and finally we present the reduced linearized model used to derive the currently
existing control laws. Note that this modeling will also be used in part by the vision-based approach.

2.1. Basics
Poiseuille flow is a flow in an infinite length channel due to a pressure gradient. The non
dimensionalized NSE of this flow are given by

where P is the pressure and V is the flow velocity. The x-axis is associated to the streamwise direction, the
y-axis to the normal direction and the z-axis to the spanwise direction. V(x, y = ±1, z, t) = 0 represents
the no slip boundary condition and Re is the Reynolds number.
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Since Poiseuille flow is simple, the analytical solution (Vbx,Vby,Vbz, Pb) of (1) in the steady state case,

i.e. can be found:

(2)

The steady state velocities profile is illustrated on Fig. 1.

2.2. Control Principle
A perturbed plane Poiseuille flow can be controlled via boundaries. Boundary control consists in modifying
boundaries conditions either on the lower boundary y = −1 [15] or on the upper boundary y = 1, or on
both the upper y = 1 and lower y = −1 boundaries [28]. The exiting boundary control approach proposed
for Poiseuille flow ensures mass conservation as shown in Fig. 2 where χu and χl are the boundary control
functions of the upper and the lower channels, which can be interpreted as a geometric alteration of the
boundaries. Note that in the absence of control, i.e. when χu = χl = 0, the red dashed curves (see Fig. 2)
are aligned with the lower and upper boundary lines as expected.
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Figure 1. Steady state velocities profile of a 3D plane Poiseuille flow: Lx and Lz are the
streamwise and the spanwise lengths respectively.
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Figure 2. Boundaries control of a 3D plane Poiseuille flow: (a) control viewed in the x-y
plane, (b) control viewed in the y-z plane.



From the existing boundary control approach of Poseuille flow, it is clear that the only appropriate
actuator type which ensures mass conservation is a synthetic jet actuator since it is a zero net mass flux
device [30]. Synthetic jet actuators are types of fluidic devices (meant to inject and to suck fluid). Note
that fluidic devices are only one possible type of actuators for flow control since there are numerous
other actuator control mechanisms such as plasma or other type which involves moving the domain
boundary as described in [31].

2.3. Reduced Linearized Model
For a practical implementation of flow control methods, the infinite dimension of a flow prompts the
need for a reduced flow model. This section aims at deriving the reduced model of a controlled
Poiseuille flow.

Concerning Poiseuille flow, most of the works focus on temporal instabilities caused by a
perturbation velocity Vp(x, y, z, t) defined as

(3)

where Vb(x, y, z, t) = (Vbx, Vby, Vbz) (see (2)). In order to keep permanent such instabilities in the
infinite channel when the flow is not controlled, a periodic boundary finite length channel is assumed
[15]. That is why the perturbation velocity Vp(x, y, z, t) can be expanded in a Fourier series

(4)

where (αn = nα0, βn = nβ0), with the fundamental wavenumber pair and, Lx and

Lz the streamwise and the spanwise period lengths respectively (see Fig. 1).
The modeling, required to derive existing control laws, consists first of all in linearizing the NSE

around the steady state solution (2). Then the continuous linearized model of the NSE of the flow is
reduced by approximation of the perturbation velocity Vp(x, y, z, t) at a specifically selected wavenumber
pair (αn, βn) of the Fourier series (4); and by decomposition of the specifically selected Fourier
series coefficient Vp

n(y, t) through the evaluation of combinations of Chebychev polynomials Φm
at Gauss-Lobatto collocation points yk as follows

(5)

This second step transforms a system of partial differential equations (PDE) obtained from (1) into
a system of first order ordinary differential equations (ODE).

Finally, the null boundary conditions of the closed-loop control system is obtained by setting the
upper and lower boundaries to the values of the control inputs χu and χl respectively. The details of the
derivation of the reduced linearized model are given in Appendix A.

All computation done, the reduced linearized model is given by the following canonical expression
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where pn(t) = (pn
m) is the state vector, An is the state matrix, u(t) = (uu(t),ul(t)) is the system control

inputs on the upper and lower channel boundaries, like blowing or suction actions as proposed for
instance in [15], Bn is the input matrix, Cn is the output matrix and z(t) is the vector of shear stress
measurements on the upper and lower boundaries.

Using the reduced linearized model (6), we now review the two standard problems related to plane
Poiseuille flow. We also present the existing solutions to these problems.

3. TWO CLASSICAL PROBLEMS AND THE EXISTING SOLUTIONS
In the framework of Poiseuille flow control, two main problems have been reported in the literature:
the first problem concerns the case where the flow is unstable [32]; and the second problem is related
to the case where the kinetic energy density growth of the flow can instigate transition to turbulence
[33]. We present these two problems below. We also present existing shear stress based control
solutions to these problems.

3.1. First Problem: Unstable Flow
For the Reynolds number Re = 10 000, the wavenumber pair (αn = 1, βn = 0) is the only one (in the
Fourier expansion (4)) which presents an unstable mode as proven by the solutions of the classical Orr-
Sommerfeld equation [32]. This instability can be seen through the poles of the state matrix An,
obtained by selecting the reduced linearized model of Poiseuille flow (6) at wavenumber pair (αn = 1,
βn = 0). These poles are illustrated on Fig. 3, in particular the unstable poles λ = 0.00373967 ±
i0.23752649 are pointed out.

In this case the flow is initially in the steady state but in an unstable equilibrium, i.e. a small disturbance
velocity value Vp(x, y, z, t) destabilizes the uncontrolled fluid flow. Since (αn = 1, βn = 0), it is worth
mentioning that the distribution of the flow velocities is the same in any z plane i.e.

(7)

It is therefore obvious to see that the reduced linearized model (6) of the unstable 3D plane Poiseuille
flow can be obtained from a single 2D plane z = zp of the 3D flow. That is why in the sequel of this paper,
instead of dealing with the unstable 3D flow, we choose, as in [15, 16, 29, 28], to address the problem of
the unstable 2D plane Poiseuille flow destabilized by the perturbation velocity Vp(x, y, t).
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Figure 3. Poles and zeros of the reduced linearized system for Re = 10 000, (αn = 1, βn =
0); note that a complex conjugate pair of poles represents a mode.



3.2. Second Problem: Transient Energy Growth
The kinetic energy density of the flow perturbation Vp(x, y, z, t) is given by

(8)

where Vo is the volume of a period of the domain under consideration. Plugging into (8) the above
described Fourier (4) and Chebychev approximations (5) of the perturbation velocity Vp(x, y, z, t), it is
possible to obtain a weighting matrix Q exactly as in [22] such that the kinetic energy density 
reduces to 

(9)

where x′ denotes the conjugate transpose of vector x.
In the case where the Reynolds number is set to Re = 5000 and the wavenumber pair is set to (αn = 0,

βn = 2.044) the reduced linearized system is stable since all the poles of the state matrix An lay on the left
part of the imaginary axis as shown on Fig. 4(a). However, in this case, it is possible to find the worst initial
condition which causes the reduced linearized system (6) to present the maximum transient energy growth
[33]. Indeed, a small perturbation velocity value Vp(x, y, z, t) in the reduced linearized system leads to a
transient effect which is characterized by a growth in a short-time behaviour of the kinetic density energy,
before a decay occurs. This transient effect, if not controlled, can cause transition to turbulence in the flow
as explained in the following.

The synchronic transient energy bound at a given time t is defined as the maximum value of the
kinetic energy density at time t:

(10)

where En(t) is the kinetic energy density given in (9). The diachronic transient energy bound or the
maximum transient energy growth is the maximum value of the synchronic transient energy bound over
all time defined by

(11)

The synchronic and diachronic transient bounds are shown on Fig. 4(b). Let pn
worst(0) be the initial

condition corresponding the maximum transient energy growth shown with the magenta dot on Fig. 4(b).
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linearized system, (b) synchronic and diachronic transient energy bounds.



As already mentioned above, if no control is applied when pn
worst(0) is the system initial condition, then

the resulting highest transient energy growth could instigate transition to turbulence in the flow.

3.3. Existing Solutions: Shear Stress Based Control
Using the classical output feedback control uj(t) = −kj zj(t) in (6), where uj is the single control input,
kj is a scalar gain and zj (t) is the shear stress measurement at a single point, the unstable 2D Poiseuille
flow can be stabilized as shown in [15]. However this simple proportional controller generally fails to
suppress unobservable high transient modes which could trigger transition to turbulence [15]. By
supposing the availability of the value of the state vector pn(t), the observability is assumed and a state
feedback Linear Quadratic Regulator (LQR), can easily stabilize the unstable perturbed Poiseuille flow,
and can reduce the growth of the transient energy limiting thus the risk of an excursion in the turbulent
state [16, 28]. Considering an infinite time horizon, the LQR signal 

(12)

minimizes the cost function

(13)

where k is the optimal gain, Q and R are positive-semidefinite weighting matrices. Matrix R is used to
limit energy consumption of actuators. In order to maintain wall symmetry, matrix R is set as a scaled
identity matrix [22], i.e. R = r2I, where r is a real positive parameter. Note that by choosing matrix Q
as the same matrix involved in expression of the kinetic energy density (see (9)), this control law can
reduce the growth of the transient energy density limiting thus the risk of an excursion in the turbulent
state [16, 28].

However, in practice the LQR approach can not be used since it requires the unknown value of the
true state value pn(t). A Linear Quadratic Gaussian (LQG) controller is thus required. This approach is
based on an estimated value (t) of the state vector. The value of (t) is obtained from the shear

stress measurements z(t) using an observer built from a Linear Quadratic Estimation (LQE) scheme (see
Section VI-A). Instead of using (12), the control signal for the output feedback LQG regulator is given by

(14)

where vector k is still the LQR optimal gain and represents an estimate of the value of x. This last
control law (14) will be refer to as shear stress based LQG (SSB-LQG) control.

However as already mentioned in Section I, any observer suffers from the initialization issue as
shown in Section VI-A. In addition in the case where the limited shear stress measurements z(t) are
noisy, the estimate (t) is also noisy as shown in Section VI-A. Both of these problems are solved by
the proposed vision-based control approach, which is introduced in the next section.

4. FUNDAMENTALS OF VISUAL SERVOING
As already mentioned in Section I, visual servoing is a well-known approach in the robotics and
automatic control communities for non linear control of complex systems. This approach consists in
using feedback information from a vision sensor to control the state of a dynamic system [27]. To
achieve a vision-based control task, a set of visual features s(t) is selected from the image of the scene.
Indeed, only a part of the image (provided by the sensor) is used to define a diffeomorphic map between
the observed scene and a judiciously selected set of features in the image. A control law is then designed
so that the visual features s(t) reaches a desired value s* corresponding to a desired state of the system.
The control principle is thus to regulate the error vector e(t) = s(t) − s* to zero.

To design the control law, the dynamic of the error vector must be known. This dynamic is given by
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where u(t) is the system control inputs, Le(t) is the jacobian matrix that encodes the time variation of
the visual features with respect to the variation of the control signal acting on the system [34], and
∂e(t)/∂t expresses the variation of the error vector due to the free motion of the visual features.

A key point in vision-based control is that this control technique belongs to the class of sensor-based
control of dynamic systems: the control law is computed in the sensor frame [35]. Consequently, this
approach corresponds clearly to an observer-free feedback control.

In the following we apply the visual servoing approach to the regulation of plane Poiseuille flow.

5. VISUAL SERVOING FOR FLOW CONTROL
In the particular case of flow control, a control law is designed from visual features obtained from the
vision system sensing the flow. Of course a great advantage of such a sensor is that it is non-intrusive.
This sensor is also an extremely rich and dense source of information on the flow. Indeed a large
spectrum of visual features s(t) could be selected from the image, such as coordinates of singular points
in the flow or the vorticity map. Nevertheless, to directly compare our vision-based approach to the

SSB-LQG approach we choose the same data, i.e. s(t) = (t). However, as shown in the next section,

the main difference between both approaches is the way to estimate . We first show in

our approach how is estimated from visual measurements, and then we present the control law.

5.1. State Estimation from Visual Measurements
Here we consider both the control of the 2D and the 3D plane Poiseuille flows.
1) 2D plane Poiseuille flow: A laser sheet is used to enlighten the particles for which the

velocities are computed (see Fig. 5). Consequently, from this visualization process, it is
possible to compute dense flow velocity maps from optical flow techniques. Optical flow can
be defined as the apparent velocity vector field representing the motion of photometric pattern

pn( )t�
pn( )t�
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(pixels brightness) in successive image sequences [36]. We first present the perspective
projection of a flow particle, then we show how to estimate a flow particle velocity from its
image velocity, and finally we present the computation of the state vector from the velocity of
a flow particle. 

a) Perspective projection of a flow particle: Let oM = (oMx(t),
oMy(t),

oMz(t)) be the space-time
coordinates of the flow particle M expressed in the flow frame Fo. The perspective projection of
M is obtained in three steps.

• The first step consists to express M in the camera frame. Let cM = (cMx(t),
cMy(t),

cMz(t))
be the space-time coordinates of M expressed in the camera frame Fc. The relationship
between cM(t) and oM(t) is given by

(16)

where (cRo,
cto) is the rigid constant kinematic link between the camera and the flow frames

(see Fig. 6). This rigid link is also known as extrinsic camera parameters.

• In the second step, the perspective projection cm(t) = (cmx(t),
cmy(t)) of point cM(t) obtained

from the well-known pinhole camera model is given by:

(17)

More details on perspective projection models can be found in [37].
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• Finally in the last step, the perspective coordinates vector cm(t) is expressed in the sensor
space (i.e. in pixel unit) as pm(t) = (pmx(t),

pmy(t)), by the relation 

(18)

where lu (respectively lv) is the pixel size (in meter) in the u (respectively v) direction, f is the focal
length and (u0, v0) is the vector coordinates of the principal point of the camera. Note that vector 
(fu = f/lu, fv = f /lv, u0, v0) represents the intrinsic camera parameters. Both the intrinsic and the
extrinsic camera parameters can be determined using the calibration method described in [38]. 
b) Estimation of the flow velocity particle from its image velocity: Now we show in three steps how

to compute the velocity of a flow particle M from its perspective image pm. The first step consists
in expressing the relationship between the flow particle and its perspective image velocities. From
(18), it is easy to show that the relationship between the image velocities pm. and the flow velocities

is given by 

(19)

where the jacobian matrix is given by

In the 2D case, since oMz(t) is constant, we have oM
.
z(t) = 0 and (19) can be rewritten as

(21)

where Ro|12 is the restriction of the orientation matrix cRo to its two first columns.
The second step consists to estimate the image velocity pm. . Vector pm. can be determined by solving

a matching problem between two consecutive images. Two approaches exist to solve this matching
problem: local and global approaches. 
i) Local approaches: region-based matching

The goal is to estimate the displacement of the point pm(t) between two images acquired at a very short
time interval by comparing windows (local regions). This comparison can be done by: 

• maximizing a similarity measurement, such as the cross-correlation used in the PIV community; 

• minimizing a dissimilarity measurement, such as the sum-of-squared differences used in the
computer vision community; 

• using a variational approach. In this case, the optical flow is computed. The optical flow
equation expresses the brightness conservation at pixel pm(t) as follows
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where Im(t) is the brightness of pixel pm(t) and ∇Im is the brightness spatial gradient. From (22),
assuming that pm. (t) is constant within a neighbourhood V (pm) of pm(t), pm. (t) can be computed using
the well-known Lucas-Kanade method based on a least-squares solution [39].
ii) Global approaches: prior regularity model on motion On the entire image, the goal is to solve a

minimization problem composed of two terms

(23)

where v is the velocity field to estimate, and where
• fd(Im,v) is the data term or the observation model that enforces the conservation assumption

for instance

– the brightness conservation

(24)

where Ω is the domain of the flow in the image; or 

– a physics-based optical flow equation for laser sheet illuminated particles in a volume and
planar control surfaces [40]

(25)

• fr(v) is the regularization term which enforces a spatial smoothness of the minimizing velocity
v to a degree prescribed by the regularization parameter α. For a first order regularization fr(v)
can be chosen as [41]:

(26)

and for the second order regularization fr(v) can be chosen as [42, 43]:

(27)

This second matching approach provides a dense vector field (one per pixel) with spatial coherence.
To sum up, the flow velocity in the image pm. can be estimated using either a region-based

matching approach that provides velocity field over local image regions at video rate [24, 25, 39]; or
a global matching approach. This last matching approach, although not running at video rate because
of current hardware limitations, provides dense velocity map, i.e. one velocity per pixel, with spatial
coherence. A comprehensive review of some NSE consistent optical flow methods is available in [36].

Finally, assuming a perfectly calibrated camera, it becomes straightforward to express the flow
perturbation velocities (x, y, t) from optical flow measurements by inverting (21) and by using (3).

c) Estimation of the state vector: This last step shows how to compute (t) from the estimation 

(x, y, t). This is done by projecting the perturbation velocities (x, y, t) onto Fourier and
Chebychev bases as detailed in Appendix B-A.

It is worth mentioning that an important contribution of this method relies on the fact that the initial
value (t = 0) is therefore no longer of concerned in our approach as shown in Section VI-B. In
addition, because of dense flow velocity maps, the vision-based approach provides less noisy
estimations of the state vector as shown also in Section VI-B.
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We now focus on the 3D case by showing how to obtain the state vector (t) from visual
measurements.
2) 3D plane Poiseuille flow: We first show the estimation of (x, y, z, t) from visual measurements

and then we compute the state vector pn(t) from (x, y, z, t)
a) Estimation of the flow velocity particle from its image velocity: The complete 3D flow

perturbation velocity (x, y, z, t) can be reconstructed in a volume using a stereoscopic pair of

images of the flow I1 and I2. Indeed, let pm1 and pm2 be the projection of the 3D point oM points
in images I1 and I2 respectively. Using (19) in both images I1 and I2, stereoscopic particle image

velocimetry (stereo-PIV) technique can be used to compute V(x, y, z, t) and thus (x, y, z, t)
in a planar domain [44]. Based on stero-PIV technique, it is possible to devise an automatic
high speed optical scanner which provides many different planes of the flow, leading thus to the
estimation of a 3D volume of the observed flow [45]. It is also possible to observe the flow with
three cameras providing thus two different planes of view from which the complete velocity
gradient tensor can be computed: this technique is known as dual-plane PIV [46].

b) Estimation of the state vector: As for the 2D case, pn(t) can be obtained by projecting the
estimation (x, y, z, t) on to the Fourier and Chebychev bases as detailed in Appendix B-B.

Of course, here again, (t) does not depend on (t = 0) as it is the case (demonstrated in

Section VI-A) with the SSB-LQG approach. Since (t) is available in both the 2D and 3D
cases, the control law can now be derived.

5.2. Closed-Loop Vision-Based Control of Flows
As mentioned at the very beginning of this Section V, we choose the same data s(t) = (t) as in the
SSB-LQG approach so that our vision-based approach can be directly compared to the SSB-LQG
approach. In that case, it becomes easy to express the dynamic of the error of the visual features e(t)
(see (15)) around the steady state solution (the equilibrium point). In the ideal case where there is no
state disturbances and there is no image noise, from the ideal state dynamic equation given in (6), it is
straightforward that the ideal image error dynamic given by (15) is such that

(28)

More precisely (28) can be physically interpreted as follows: the term describes the

instationary aspect of the flow image velocity map due to the motion of the uncontrolled flow, and the
term Le(t) encodes the spatial inhomogeneity aspect of the flow image velocity map due to unsteady
actuation (for instance blowing and suction actions).

Consequently, around the desired state, (15) can be rewritten as 

(29)

and the simple state-feedback control law

(30)

can be used. We will refer to this vision-based control law as the vision-based LQG (VB-LQG) control
law since (t) is obtained from visual measurements instead of shear stress measurements as used in (14).

In the next section, we compare the SSB-LQG approach with the proposed VB-LQG method.

6. COMPARISON BETWEEN THE SSB-LQG AND THE VB-LQG APPROACHES
The major difference between the SSB-LQG and the VB-LQG approaches is the estimation of the state
vector (t): the SSB-LQG regulator uses an observer built from the LQE approach whereas the 
VB-LQG approach relies on an observer-free estimation method. We now highlight the influence of
these estimation methods on the closed-loop system.
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6.1. Behaviour of the System Closed by the SSB-LQG Control Law
We first present the LQE framework and then we present the system closed by the SSB-LQG control.
In the LQE framework, on which the SSB-LQG approach relies, it is generally assumed that the
reduced linearized system (6) has process disturbances εp and measurements noise εz. In addition εp 
and εz are assumed to be uncorrelated Gaussian white noise with covariance matrices Ξp

and Ξz
respectively. The reduced linearized system (6) is thus rewritten as

where is the expectation operator.

Let δn(t) = (t) − pn(t) be the estimation error. From the plant model given in (31), a consistent
estimation scheme is given by

where (t) is the estimated state vector for an infi-nite time horizon, and L the optimal gain that

minimizes E{[δn(t)]′[δn(t)]} given by L = xBn�Ξ�
z where x (a positive-semidefinite matrix) is the

solution of the algebraic Riccati equation xAn� + Anx−xCn�Ξz
−1Cnx + Ξp = 0. The term ϕ(t) is 

the innovation term representing the difference between the current measurement and its prediction.
The higher the value of L the more reactive the system.

Using (31) and (32) we obtain the estimation error dynamic

(33)

where An
L = An−LC n�. The solution of (33) is

(34)

As shown in (34), the initial error value highly influences the convergence time after which (t)
equals the true value of the state vector pn(t): this is the well known asymptotic convergence property

of the LQE. Modeling the initial condition (t = 0) with known physical statistics about the studied

flow and using a time-varying estimator gain L(t) can reduce the time to which (t) equals the true
value of the state vector pn(t) as proposed in [21]. But this solution is still not satisfactory since it needs
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additional a-priori parameters in the model of the initial condition. In addition, (34) shows that the
estimation scheme also suffers from modeling error εp and measurements noise εz . Expression (34)
also clearly shows that a compromise on the value of L has to be found: indeed the value of L must be
low to limit the influence of the measurement noise while we have pointed out that the value of L must
be high to take into account the innovation term ϕ(t).

Now we present the system closed by the SSB-LQG control. By combining the estimation error
dynamic given in (33) and the control law (14) into the first equation of (31), the behaviour of the
closed-loop system is given by

(35)

where, with An
k = An − Bn k� and I an identity matrix.

Equation (35) clearly shows that the true state dynamic p.n(t) (around the desired state) depends on the
estimation error. Therefore, since this error highly depends on the initial unknown estimation error, a
poor initialization of the observer could drive the system to a turbulent state as shown in [22]. In
addition the noise in the measurements propagates in the control law (see (14)), this is not suitable at
all for the lifetime of the actuators.

6.2. Behavior of the System Closed by the VB-LQG Control Law
We first present the estimation of the state vector (t) in the case of noisy optical flow measurements
only in the 2D case1, and then we present the system closed by the VB-LQG control. In the case of the
2D plane Poiseuille flow, it is possible to express the estimation error δn(t) when (t) is estimated
from optical flow measurements. Indeed, let ε(x, y, t) be a 2D independent identically distributed white
Gaussian process. Let Vp(x, y, t) be the M × N locations size image of the perturbation velocity map
obtained from noise-free optical flow measurements. From (21), in the practical case where optical flow
measurements pm. are corrupted by a Gaussian noise process, the computed flow perturbation velocities
Vp are also affected by Gaussian noise. Without lost of generality the noisy perturbation velocity map
can be written as (x, y, t) = Vp(x, y, t) + ε(x, y, t). This noisy perturbation velocity map

(x, y, t) is used to compute the estimation of the state vector pn(t) as detailed in Appendix B-A. We
obtain

(36)

from which we immediately deduce the estimation error

(37)

where vector en(t) the projection of the measurements noise matrix ε(t) onto Fourier and Chebychev
bases. It is clear from (36), that the larger the value of N, typically N > 1024 for real images, the
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1Theoretically, because of the non-linear process that transforms the 2D image velocities to 3D flow particles velocities, the potential drawback

with a stereo-PIV technique is that a small image processing error could lead to large error in the estimation of the velocities Vp
; In addition a

stereo-PIV technique rely on an accurate calibration of two cameras. Modeling the effects of image processing and calibration errors is very

complex. That is why we leave for future works the robustness analysis to noise of the vision-based state estimation for 3D flows. Nevertheless in

practice the cameras are usually accurately calibrated and the image processing algorithms are robust to noise.



smaller the state vector estimation error. Although for a PIV image (based on a correlation technique)
the number of velocity measurements is less than the number of pixels in the image, a PIV image still
provides sufficient measurements for N to be large enough to reduce the noise. Therefore, in the vision-
based case, contrary to (34), the estimation error (37) does not depend anymore on the initial estimation
error: this is a strong advantage of our approach.

We now present the system closed by the VB-LQG control. As for the SSB-LQG approach, the
behaviour of the closed-loop system can be also obtained. In this case, the reduced linearized system
(6) controlled by the vision-based approach (30) is given by

leading to the following behaviour:

(39)

The initial value (t = 0) is therefore no longer of concerned in our approach. In addition for a
large number of velocity measurements N, the reduced linearized system dynamic equation (39) is less

affected by measurements noise since tends to 0. This is another great improvement 

over the SSB-LQG control scheme that is always noise dependent when noisy shear stress values are
used in the LQE approach as shown in (35).

7. RESULTS
In this section we validate the proposed theoretical results. The validations of our approach do not use
real optical flow measurements for the 2D flow or PIV measurements for the 3D flow. We rather use
synthetic data sets of spatio-temporal variations of the perturbation velocities obtained from the
Poiseuille flow reduced linearized model presented in (6). Using Matlab codes provided in [22],
matrices An, Bn, Cn given in (6) are computed. We first present the result for the stabilization of the
2D Poiseuille flow (see Section III-A) and then we present the result of the reduction of the transient
energy growth in the 3D flow (see Section III-B). Finally we discuss about the potential advantages of
the vision-based approach for flow control.

7.1. Stabilization of the Unstable Flow
First of all, the behaviour of the VB-LQG approach is shown in the ideal case, then we compare the
estimation of the state vector provided by shear stress measurements or by optical flow measurements.
Finally, the behaviour of the closed-loop systems are presented in both cases. The following classical
characteristics have been used as in [15, 16] and [28]: the Reynolds number is Re = 10 000, the length
of the channel is Lx = 4π, and the reduced model Fourier wavenumber pair is (αn = 1, βn = 0). The
parameter r of the weighting matrix R is r = 200, penalizing thus high control values.
1) VB-LQG control in the ideal case: We first present results concerning the VB-LQG control

approach (30) in the ideal case where there is no measurements noise. Fig. 7 shows the different
steps in the control of the perturbed flow with N = 252. Fig. 7(a) pictures the desired image of the
flow corresponding to the steady state velocities profile; Fig. 7(b) shows the image of the flow just
before the application of the vision-based control law where we can see that the flow has become
turbulent. Figs. 7(c) and 7(d) show different steps of the controlled flow at arbitrary selected
iteration numbers k = 1047 and k = 1500 respectively: the control at each selected instant is
represented by green vertical arrows on the upper and the lower channel boundaries. The control law
converges since it tends towards 0 as shown on Fig. 7(e). Moreover, Fig. 7(f) depicts the kinetic
energy density of the flow perturbation where we can see an increase due to the perturbation growth
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in the case where the flow is not controlled; and then a decrease also towards 0 once the control law
is applied. At this step, we can see that the final velocities profile given in Fig. 7(d) is very similar
to the desired velocities profile in Fig. 7(a). Therefore, the VB-LQG approach performs as expected.

2) Comparison of the estimation methods: In this section we show that the vision-based state estimation
provides better results than the LQE state estimation. We consider a perturbed flow which is not
controlled. Results are given in Fig. 8 in terms of the square norm of the state vector instead of the
more relevant 2M (normally greater than 40 for a more accurate reduced model) components of the
state vector for the sake of clarity and readability. Fig. 8(a) presents the ideal case where there is no
measurements noise and no initialization error. From this figure we can see that both estimations
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perfectly correspond to the ground truth value of the state vector. Fig. 8(b) highlights the poor
initialization issue and the asymptotic convergence issue in the LQE; these issues are not of
concerned in the vision-based approach which provides the ground truth value of the state vector.
This result confirms that the vision-based estimation performs better than the LQE from shear stress
measurements in any case of poor initialization of the LQE.
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(a) ideal case, (b) LQE poor initialization, (c) measurements noise with a large number of
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The strong robustness to noise of the vision-based state estimation is presented on Fig. 8(c)
where the standard deviation (STD) σof on the optical flow noise has been purposely set to a value
10 times higher than the STD σss on the shear stress noise. This figure presents an average over a
large number of realizations of the stochastic noises in the case where N = 501 velocity
measurements are used. Note that N = 501 is far less than the number of velocity measurements
available in real situations where the images size can be at least 1280 × 960 (N = 1280). Due to a large
number of flow particles velocities provided by visual sensing, the new approach is very robust to noisy
measurements.
3) Behavior of the closed-loop systems: The behaviour of the closed-loop system is shown to be better

with the VB-LQG control (30) than with the SSB-LQG control (14). Results are presented in Fig. 9.
Fig. 9(a) depicts the behaviour of the control signal in the ideal case (no measurements noise, no
initialization error). Fig. 9(b) depicts the behaviour of the control signal when the initial value is
set as (0)= 0 by default since the value of (0) is unknown. In this case we can see that the
value of the control signal is 100 times higher than the ideal control signal case which includes
the VB-LQG approach (compare the highest control signal values in Fig. 9(b) and 9(a)). This
higher control signal value could lead to an unsuitable state trajectory which can cause the real
non-linear system to diverge as shown in [22]. In addition, as expected, the control signal (see
Fig. 9(b)) takes more time to converge to 0 (3000 iterations compared to the VB-LQG approach).
This leads to an energy consumption far much higher for the SSB-LQG control than for the VB-
LQG control.

The figures in the second row present the control signals in presence of measurements noise. Fig. 9(c)
pictures the case of the SSB-LQG control where we can see that the control signal does not converge
to zero: although the noise STD has been set to a small value, σss = 0.03, the control signal is very noisy,

pn�pn�
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Figure 9. Comparison SSB-LQG and the VB-LQG control approaches: (a) ideal case 
(no measurements noise, no initialization error), (b) initialization error in the SSB-LQG

control, (c) measurements noise the SSB-LQG control, (d) measurements noise 
in the VB-LQG control.
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which is not suitable for actuators lifetime. Finally, Fig. 9(d) illustrates the robustness of the VB-LQG
control where the STD in the optical flow noise is 10 times higher than the STD in the shear stress
noise: we can see from this last figure that the larger the sample of flow particles velocities used the
lesser the noise in the control signal.

7.2. Reduction of the Transient Energy Growth
In this section we show that the VB-LQG control (30) can be used to limit the transient energy growth
better than the SSB-LQG regulator. We have chosen the following classical characteristics as used in
related works [33, 16, 28]: the Reynolds number is Re = 5000, the length pair of the channel is 
(Lx = 4π, Lz = 2π), and the reduced model Fourier wavenumber pair is (αn = 0, βn = 2.044). The
parameter r of the weighting matrix R is set as r = 128 since it is shown in [22] that this value of
r corresponds to the lowest transient energy growth.

Let pn
worst(0) be the initial condition corresponding the maximum transient energy growth show with

the magenta dot on Fig. 4(b) or the magenta dot on the blue dash-dotted plot on Fig. 10(b). In this
particular case, if the flow is not controlled the high transient energy could instigate transition to
turbulence in the real flow. Here we apply the VB-LQG control (30) and the SSB-LQG control (14) in
the ideal case where there is no measurements noise. In addition, as in [22], we assume reasonable to
set zero observer initial conditions for the SSB-LQG controller, i.e. �pn

worst(0)= 0. Fig. 10(a) shows the
control signals where we can see that the maximum control value for the SSB-LQG is 5 times greater
than the maximum control value of the VB-LQG approach. On Fig. 10(b) we can see the kinetic energy
is effectively better reduced by the VB-LQG control (30) than by the SSB-LQG control (14). This is
mainly due to the asymptotic convergence of the observer used in the SSB-LQG approach. To sum up,
the VB-LQG control (30) offers a better reduction of the kinetic energy density with much lesser
control efforts than the SSB-LQG control (14).

7.3. Discussion
In the previous sections we have demonstrated that our vision-based estimation scheme clearly
provides better results than the LQE based on sparse measurements of shear stress. Many reasons can
explain that.

First, the LQE approach is not well adapted to this problem. Indeed, this approach only provides
the asymptotic convergence of the state estimation to the true value of the state. In addition, as
shown by equation (34), this approach directly depends on measurements noise through the vector
L. Moreover, the goal of the LQE method is to provide a state estimation consistent with the
linearized model of the flow but not with the true model. A much better approach is to directly
extract consistent 2D velocities with a physical model of the flow by methods described in section
V-A1b. In this case, by using such methods, the convergence to the true 2D velocities is no longer
asymptotic, the robustness with respect to measurements noise is also achieved through an
averaging over a dense sample of measurements.
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Second, let us assume the availability of dense shear stress measurements. In this case, by
averaging over a large number of shear stress measurements we can expect a less noisy estimated
state. Nevertheless, such an approach will suffer from a lower spatial resolution than the vision-based
approach. Indeed, it seems very difficult to instrument in practice a wall with more shear stress
sensors than the number of pixels (in the streamwise direction) of a camera. Therefore, the state
estimation from a vision-based approach will still be more robust to noise.

8. CONCLUSION
In this paper we have proposed a vision-based approach for fluid flow control. This approach uses
image measurements to estimate the flow state. Theoretical proofs have been presented to show the
improvements on state estimation and flow control provided by the vision-based approach over the
commonly proposed shear stress based LQG control. Indeed the shear stress based LQG regulator
limitations concern the limited number of shear stress measurements, the measurements noise and the
initialization of the observer involved in the flow state estimation. The initialization issue is not of
concerned in the vision-based approach. In addition the vision-based approach has been shown to be
robust to measurements noise since a large number of flow velocities is available in real practical
situations. These results, validated on a linear simulator, suggest that visual servoing can significantly
improve fluid flow control. Future work will be devoted to the validation of the vision-based control
approach using a non-linear flow simulator.
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APPENDIX A
1. POISEUILLE FLOW MODELING
The reduced linearized system (6) is obtained from (1) in the following four steps [28].

1.1. Linearization about the Base Flow
In the first step, equation (1) is linearized about the steady base flow

where Vb = (Vbx, Vby, Vbz) (see (2)). At a given time t0, a temporal instability is introduced in the base
flow (40) through a velocity-pressure perturbation parameter (Vp, Pp). The resulting velocity-pressure
parameter is given by (Vb + Vp, Pb + Pp) and the resulting flow motion, obtained from (1) and (40)
after some developments, and assumed periodic in the x and z directions is given by

(41)
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Assuming that the non-linear term (Vp ˙ ∇)Vp is negligible compared to the other terms of the first
equation in (41), we can set (Vp ˙ ∇)Vp = 0 in (41), which leads to the linear model of the perturbed
flow

1.2. Divergence-Free Formulation
The second step consists in a divergence-free formulation of (42). Indeed, since there is no time
derivative in the second equation in (42d), equation (42) has to be reformulated into another equation
which implicitly takes into account the constraint (42d). The divergence-free formulation can be
obtained using the velocity-vorticity approach as done in [33].

Using the velocity-vorticity approach, from (42), we obtain after some developments, the normal-
velocity equation

where Vpy0(x, y, z) represents the initial conditions; and the normal-vorticity equation
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where

(45)

is the vorticity component in the y direction, ηy0(x, y, z) represents initial conditions. Equation (44) is
obtained by simplifying th expression ∂(42a)/∂z − ∂(42c)/∂x. Equation (43) is obtained in three
steps: the Laplacian of (42b) is given by

(46)

The Laplacian of Pp, obtained by taking the divergence of (42) (∂(42a)/∂x + ∂(42b)/∂y +
∂(42c)/∂z), is given by

(47)

Plugging (42d) into (47) leads to

(48)

Finally plugging (48) into (46) leads to (43).

1.3. Closed-Loop System Equation and System Output
In the third step we present the closed-loop system equation and the system output.
1) Closed-loop system equation: In order to ensure zero boundary conditions in the closed-loop

controlled system, boundary control inputs are taken into account in the system equations (43)
and (44). Since boundary control consists in modifying the upper y = 1 and lower y = −1 normal
velocity, i.e. Vpy(x, y = ±1, z, t) � 0, it is clear that only equation (43) is concerned with changes
in boundary conditions.

The boundary control on the upper and the lower channels can be theoretically modeled by (see Fig. 2)

(49)

where yM = −1, y1 = 1; χl and χu verify Neumann boundary conditions

(50)

wu(x,z,t) and wl(x,z,t) are sinusoidal functions that verify the mass conservation condition in the closed-
system, i.e. the mass of fluid injected by blowing equals the mass of fluid removed by suction; and

are spatial weighting functions. More precisely the control 

consists to modify the amplitudes of the sinusoidal functions wu(x, z, t) and wl(x, z, t): we thus have a two
control inputs system. Note that in the absence of control, i.e. when wu(t, x, z) = wl(t, x, z) = 0, the red
dashed curves (see Fig. 2) are aligned with the lower yM and upper y1 boundary lines as expected.
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Using the change of variables

(51)

into (43) leads to the normal-velocity homogeneous formulation of the closed-loop equation

2) System output: The flow is usually sensed on its boundary channel by measuring the shear stress at
several points on the upper and the lower boundaries. Four non-dimentionalized measurements of the
shear stress at the point (x, z) = (xi, zi) can be used: the first measurements vector (zxyu(xi, y1, zi, t),
zyzu(xi, y1, zi, t)) on the upper boundary and the second measurements vector (zxyl(xi, yM , zi, t),
zyzl(xi, yM , zi, t)) on the lower boundary as done in [22]. Since the computations zxyu(xi, y1, zi, t) and

zyzu(xi, y1, zi, t) are similar to the computations of zxyl(xi, yM, zi, t) and zyzl(xi, yM , zi, t) respectively,

in the following we focus only on the computation of zxyl(xi, yM, zi, t) and zyzl(xi, yM, zi, t). We have

(53)

In the case where no control is applied, we have no slip boundary condition, i.e. Vpy(x, yM, z, t) = 0
on the lower boundary for instance, thus ∂Vpy(x, yM, z, t)/∂x = 0 and ∂Vpy(x, yM, z, t)/∂z = 0. On
the other hand, in the case where a boundary control is applied, since the value of Vpy(x, yM, z, t) is
known, the values ∂Vpy(x, yM, z, t)/∂x and ∂Vpy(x, yM , z, t)/ ∂z are also known. That is why, the shear
stress measurement vector can be reduced to [47, 16]:
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The expression of the boundary output in terms of the normal velocity and normal vorticity is given
in the next section.
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1.4. Spatial Discretization Via Spectral Decomposition
Since the flow control problem is an infinite dimension problem in spatial coordinates (i.e. an infinite
degrees of freedom system), as a second approximation and last step towards the state space
representation (6), the closed-loop linearized equations (52), (44) and the system output (54) are
discretized in space in order to solve the problem in practice.
1) Projection in the streamwise and spanwise directions:
a) Approximation of velocities: We recall that in the case of temporal instabilities the flow is assumed

periodic in the streamwise and spanwise directions in [47]. Using Fourier series in the streamwise
and spanwise directions, the homogeneous normal velocity Vh

py (x, y, z, t) can be approximated 

at a wavenumber pair (αn = α0n, βn = β0n) with (the fundamental
wavenumber pair), by

(55)

where
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Assuming a similar solution for the streamwise velocity Vpx, spanwise velocity Vpz, normal vorticity
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with

(61)

and

(62)

with

(63)

Finally, the approximation of the normal velocity, obtained from the change of variable equation
(51) and from (56), (61) and (63), is given by

(64)

where

(65)

b) Approximation of the closed-loop controlled system: Here we present the approximation of the
closed-loop system equations (52) and (44) at the wavenumber pair (αn, βn).
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some developments, is given by
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Using (59) and (64), after some developments, the normal vorticity equation (44) can be
approximated at the wavenumber pair (αn, βn) as follows

(c) Approximation of the system output: The approximation at the wavenumber pair (αn, βn) of the
boundary output (54) in terms of the normal velocity is given by:

(68)
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Using (69) and (70) we easily obtain the Fourier coefficients Vn
px(y,t) and Vn

pz (y,t) in terms of ηn
y (y,t)

and 

(71)

From (71) it straightforward to get

(72)

By plugging (65) into (72), we immediately obtained the approximation at the wavenumber pair
(αn, βn) of the boundary output given by (68):

2) Decomposition in the normal direction: Now we show how to decompose Vhn
py (y,t) given in (66) 
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Chebychev polynomials at Gauss-Lobatto collocation points. These points range from yM = −1 to
y1 = 1 and are defined as follows
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(Θm(y))m that satisfied only Dirichlet boundary conditions. On the other hand the approximation
Vhn

py (y,t) given in (66) satisfies Dirichlet and Neumann boundary conditions as stated in (66b): the
decomposition of Vhn

py (y,t) in the normal direction is thus obtained using Chebychev polynomials
(Σm(y))m which satisfied both Dirichlet and Neumann boundary conditions. Chebychev polynomials
(Θm(y))m and (Σm(y))m can be selected in order to produce the best conditioning of the discretized
form of the Laplacian as proven in [22]:

(75)

and
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points yk as follows:
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points yk as follows:
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a) Approximation of the closed-loop controlled system: Plugging (80) into (66) leads to, after some
developments, to

(81)

where an
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where an
ηy(t) = (an

nym (t))1≤m≤M−2 is a complex column state vector; An
7 = (an

7mk)1 ≤ κ, m ≤ M−2 is a
constant complex matrix given by an

7mk = iΘm+2 (yk +1); An
8 = (an

8km) 1 ≤ κ ≤ M−2, 1 ≤ m ≤ M−4 is a constant

complex matrix given by is a constant real

matrix given by is a

constant real matrix given by and

Using (81) and (82) the state space representation of the 3D controlled flow is given by

(83)

with 

b) Approximation of the system output: Plugging (77) and (80) into the system output on the lower
wall (73) leads, after some developments, to

(84)

Similarly we obtain the following discretization of the upper wall output
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Using (84) and (85), the system output is given by

(86)

with 

c) Canonical state space representation: Now we present the canonical state space representation
obtained from (83) and (86).

If An
1 is invertible, then (83) can be rewritten as

(87)

where and Using the augmented state vector
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expression (87) and (86) can easily be rewritten in the classical state space representation form as
follows
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where

APPENDIX B
2. VISION-BASED STATE ESTIMATION
2.1. 2D Plane Poiseuille Flow
In this case the state vector pn(t) equals since only (81) is used to derived the

reduced model at the wavenumber pair (αn = 1, βn = 0). Indeed at this wavenumber pair, equations
(81) and (82) are decoupled because An

8 = 0; moreover the control signal q(t) has no effect in (82)
since Bn

7 = 0.
We have shown in Appendix A-D that pn(t)= are coefficients of decomposition

of the normal velocity Vpy(x, y, z, t) over both analytical Fourier and Chebychev bases [33]. Note in
this case Vpy(x, y, z, t) = Vpy(x, y, t) as shown in Section III-A. Here we show the three steps for
estimation of pn(t) from the perturbation velocity map Vp(y, x, t) (transpose of Vp(x, y, t) in the
general case where the optical flow measurements are corrupted by a Gaussian noise.

Let

(90)

be the ideal normal perturbation velocities, where N and M are the number of velocity measurements
of the image of the flow in the streamwise and normal directions respectively. Since optical flow
measurements are corrupted by a Gaussian noise, the normal perturbation velocities are also corrupted
by a Gaussian noise (see (21)):

(91)

where εji(t) is random Gaussian noise on the velocity value at each location (independently) with
standard deviation (STD) σof and 0 mean. Let
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be the Gaussian noise matrix. In the following we show how to obtain (36).
We first compute the Fourier series coefficients of the measured image velocities at the

wavenumber αn = 1. Indeed by multiplying the sum of (90) and (92) by the transpose of the vector
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we obtain the Fourier series of the noisy velocities

(93)

Since the upper boundary condition is a sinusoidal function (see (49)), its Fourier series coefficient
is given by

(94)

from which we deduce that

(95)

Plugging into (95) leads to

(96)

Similarly the coefficient (t )for the lower boundary can be expressed as

(97)

In the second step we compute the homogeneous coefficients vector . From the Fourier

transform of (51) given in (65), the homogeneous coefficient measurements (yj , t) are given by the
expression
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where and j = 1,..., M. The homogeneous coefficients

vector is thus given by

In the last step, the vector of Fourier series and Chebychev polynomials decomposition vector

coeficients (t) is given by

(101)

where

is obtained by evaluation of combination of Chebychev basis on collocation points (79).
Plugging (100) into (101) leads to

(102)

since Finally by letting 

it is easy to express the estimated coefficient (t) in terms of the ideal one and the noise as given
in (36).
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2.2. 3D Plane Poiseuille Flow
Suppose that the 3D velocities Vp = (Vpy, Vpy, Vpz) of the flow are measured in a N × M × Nz size
volume using a stereo-PIV technique with no image measurements noise. Here we show how to
compute the state vector pn(t) from Vp(x, y, z, t). The state vector pn(t) includes not only qn

u(t) and
qn

l (t) but also coefficients an
vy(t) and an

ηy(t) (see Appendix A-D3a) of decomposition of the normal

velocity Vpy(x, y, z, t) and normal vorticity respectively,

over both analytical Fourier and Chebychev bases [33]. The state vector pn(t) is thus obtained by
projecting both the normal perturbation velocity Vpy(x, y, z, t) and the normal vorticy ηy(x, y, z, t)
onto Fourier and Chebychev bases as shown below.

Coefficients an
vy(t), qn

u(t) and qn
l (t) are obtained exactly as in the 2D case (see Appendix B-A),

except that here we suppose no measurements noise and the Fourier series coefficients are given by

(103)

with k = 1, …, M.
The coefficients an

ηy are obtained by decomposition of the Fourier series coefficients of ηy(x, y, z) on
Chebychev polynomials evaluated on collocation points yk [22]:

(104)

where and with
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