
Volume 3 · Number 2 and 3 · 2011

Investigation of the Inner Nozzle Wake on
Kelvin Helmholtz Instabilities in a

Coannular Jet
Shekhar Sarpotdar* and Ganesh Raman†

Fluid Dynamics Research Center, Illinois Institute of Technology, Chicago, IL-60616, USA

ABSTRACT
In the present work, we study stability characteristics of synthetic profiles prototypical of
coannular jets, using a spatial, inviscid and compressible formulation of linear stability
theory. The focus of our study is to understand the effect of the wake of the nozzle that
separates the primary jet from the secondary jet, on the characteristics of different
instability modes. Some of the parameters under focus are Mach number of the primary
jet (M1), wake deficit (Wamp), and temperature ratio (T01/T∞). One of the other aims of
this work is to compare our results with that of the 2-D planar mixing layers separated
by a splitter plate – for which counteracting effect of compressibility and the wake of the
splitter plate, on the instability characteristics, are known. Our results show that, for
circular jets, unlike 2-D planar mixing layers, the vorticity introduced by the wake fails
to overcome the stabilization effect caused by compressibility. Heating the jet, i.e.,
increasing the temperature ratio T01/T∞, may increase or decrease the maximum growth
rate depending on the exact combination of the flow parameters and the particular
stability mode.

1. INTRODUCTION
Noise emitted from aircraft is one of the major causes that impose constraints on the maximum
utilization of airports and air transportation. Aircraft companies have been researching novel noise
reduction concepts. Engines with a high bypass ratio, wherein a high speed stream of air from the main
jet is shrouded by a low speed coannular jet, is one such concept. Although the concept is successful
and has been integrated with real jet engines, it is still an area of active research and development.
Researchers have been trying to improve nozzle contours [1] and understand noise sources associated
with these jet flows through experiments and computations.

Based on the nozzle that carries the high velocity stream of air, coannular jet flows can be divided
into two categories, i.e., Normal Velocity Profile (NVP) coannular jets and Inverted Velocity Profile
(IVP) coannular jets. In the case of NVP, it is the inner nozzle that carries high velocity stream, whereas
in the case of IVP, the outer coannular nozzle carries high speed stream of air. Out of these two
configurations the NVP configuration is more common. Figure 1 shows a schematic of the flow field
of a typical NVP coannular jet. As the high speed primary jet and annular low speed secondary jet of
air leave the inner nozzle and outer nozzle respectively, they form their individual potential cores.
Between these two potential cores, lies an annular wake of the inner nozzle. Note that this wake is not
only generated due to the flow obstructed by the nozzle lip, but also due to the boundary layer that
develops on both the sides of the nozzle. To the best of our knowledge the effect of the wake of the
nozzle has not been examined systematically, in the compressible regime. Such an analysis is useful for
high speed jet flows, since for the planar shear layers, the wake effect is known to counteract the
compressibility effect, i.e., increasing the Mach number reduces the shear layer growth rate, but adding
wake into the shear layer profile increases its growth rate [2]. It is the influence of this wake on the
stability characteristics of the NVP jet that is a focus of this study. Such study would be useful
designing coannular jet nozzles for applications ranging from industrial burners to jet engines.

Stability of circular jets has been the subject of interest for a long time. With the advent of jet
engines – and the noise produced by them becoming a growing concern – the subject gained practical
importance and more attention. Knowledge of stability characteristics is critical to understanding the
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development of large scale turbulent structures which influence aeroacoustic properties of high speed
shear layers and jets [3]. Michalke [4] was one of the first ones to review the theoretical work done in
this area. He reviewed spatial stability of both parallel flow and slowly diverging circular jet flows. His
focus was mainly on subsonic circular jets. In a series of experimental studies Oertel [5] observed three
families of waves, viz., subsonic instability, supersonic instability and Kelvin Helmholtz Instability;
each with its own distinct characteristic and phase speed. Tam and Hu [6] showed the existence of these
three types of instabilities analytically. They also specified criteria for the individual instability, using
linear stability theory. They found that for these instabilities to occur, the jet must be supersonic in the
instability wave frame of reference. Panickar and Raman [7, 8] performed linear stability analysis
relevant to the problem of jet impingement tones and its control. Thurow et al. [9, 10] performed
experimental study to measure the convective velocity of large scale structures in the circular mixing
layers of high speed jet.

Villermaux and Rehab [11] and Rehab et al. [12] provided a very detailed account of near field flow
structures of a coaxial jet. Rehab et al. [12] found that for large velocity ratio, the stability mechanism
of an IVP type jet may depart from common convective spatial stability to the that of the absolute
stability associated with the back flow within the inner jet.

Dahm et al. [13] performed experimental work, by changing the velocity of the low speed and high
speed stream, to shed light on the stability of the coannular jets. They supplemented this experimental
study with numerical analysis. However, their study was limited to low Reynolds numbers, where
compressibility was unimportant. Dahl and Morris [14, 15] performed a rigorous investigation of the
coannular jets at high Mach numbers. They analytically calculated the mean flow field and then used
it to predict the aeroacoustic characteristics of the jet. However, they did not take into account the wake
of the inner nozzle in their analysis.

Fang and Reshotko [16] and Michalke [17] were one of the few, who investigated the instability of
wake dominated mixing layers. However, they restricted their study to the single stream nozzle
configuration – with specific focus on the flight effect. In the present study the configuration is that of
the coannular jet velocity profiles, in which the interface of primary and secondary jets contains
velocity deficit due to the wake of the inner nozzle. We especially focus on the effect of compressibility
and heating of these jets.

2. METHODOLOGY
2.1. Linear Stability Analysis
In this section we develop the stability equations within the framework of linear stability theory as
applied to the compressible, inviscid, nearly parallel axisymmetric flows in radial coordinates.
Adhering to the cylindrical (x, r, θ) coordinate system, we now list the governing equations. The
continuity equation is given by:

(1)

Where u, v and w are the velocity components in x, r and θ direction respectively and ρ is the fluid
density. The momentum equations in x, r and θ direction are as follows.
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Figure 1. Schematic of the flow field of the Normal Velocity Profile (NVP) coannular jet.



(2)

(3)

(4)

The energy equation, for ideal gas with constant specific heats in the absence of heat exchange and
body forces, is given by:

(5)

Note that the above equations are in nondimensional form. The density ρ* has been nondi-
mensionalized using primary jet centerline density at the nozzle exit, ρ∗

1, i.e., ρ = ρ*/ρ∗
1. Here

superscript ‘*’ denotes that the the quantity is in dimensional form. The subscript ‘1’ refers to the
property at the centerline of the primary jet. The velocity u* = (u*, v*, w*) has been
nondimensionalized using primary jet centerline velocity u∗

1. The pressure has been
nondimensionalized using ρ∗

1u1
*2, and the lengths are nondimensionalized using the radius of the

primary jet at the exit, i.e., r∗Ι . Here, the subscript ‘I’ refers to the inner nozzle perimeter. Similarly,
whenever subscript ‘II’ is used, it refers to the outer nozzle perimeter. Next, assuming the flow to be
locally parallel, the density, ρ, the pressure, p, and the velocity components, u, v and w are
decomposed into mean and fluctuating/perturbation terms as shown below:

(6)

(7)

(8)

(9)

(10)

where terms with an overbar denote the mean part and those with a tilde denote the fluctuating part of
the given variable. The mean pressure which is equal to the ambient pressure, is assumed to be uniform
at any given cross section of the jet.

ρ θ ρ ρ θx r t r x r t, , , ( ) ( , , , ).( ) = + %

p x r t p p x r t, , , ( , , , ),θ θ( ) = + %

w x r t w x r t, , , ( , , , ),θ θ( ) = %

v x r t v x r t, , , ( , , , ),θ θ( ) = %

u x r t u r u x r t, , , ( ) ( , , , ),θ θ( ) = + %

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂

∂
+

∂
∂

+
p
t

v p
r

w
r

p u p
x

p
r

vr
r r

w
θ

γ
θ

1 1( ) ∂∂
∂











 =

u
x

0,

ρ
θ θ

∂
∂

+
∂
∂

+
∂
∂

+ +
∂
∂











 +

∂
∂

w
t

v w
r

w
r

w vw
r

u w
x r

p1
== 0,

ρ
θ θ

∂
∂

+
∂
∂

+
∂
∂

− +
∂
∂
















+

∂
∂

v
t

v v
r

w
r

v w
r

u v p
r

2

== 0,

ρ
θ

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂











 +

∂
∂

=
u
t

v u
r

w
r

u u u
x

p
x

0,

Shekhar Sarpotdar and Ganesh Raman 69

Volume 3 · Number 2 and 3 · 2011



Substituting the decompositions given in (6)–(10) into (1) to (5), and eliminating terms that contain
the product of fluctuating terms, the linearized equations governing the perturbation quantities can be
written as follows:

(11)

(12)

(13)

(14)

(15)

where which follows form the laws of ideal gas.

The linearized equations show that the perturbation density term, ρ~ occurs only in the continuity
equation. Equation (11) thus decouples from the momentum and energy equations. Hence, only
equations (12)–(15) need to be considered. Substituting the normal-mode ansatz given by:

(16)

into equations (12)–(15), a coupled system of ordinary differential equations for û (r), v̂ (r), ŵ (r) and
p̂ (r) is obtained. This coupled system can be solved to yield a single equation in the variable of interest,
in this case the perturbation pressure, p̂ , as follows:

(17)

Equation (17) is the two-dimensional, compressible Rayleigh equation [4]. To solve this equation
using the shooting method, we cast this equation in the form of phase velocity eigenvalue problem, i.e.,
we substitute c for α in (Equation (17)).
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Equation (18) is the phase velocity form of the Rayleigh equation. Solving the equation for complex
phase velocity c instead of α gives better numerical performance. This is due to the fact that, for a given
ω, the possible range of real α values is far greater than the possible range of c values. This is partly
due to the fact that the real part of c lies within the bounds of maximum and minimum velocities in the
flow [15].

In Equation (18) instead of computing or experimentally measuring the mean velocity u– we resort
to artificial velocity profiles, referred to as synthetic profiles, prototypical of the ones obtained just at
the exit of the coannular nozzles. The equation for the synthetic profiles is

(19)

where

(20)

The above equations are adapted from the work of Perrault-Joncas and Maslowe [18]. In this equation
θ, δω, Wamp, Woff and Wwid represent relative strength of two shear layer momentum thickness, vorticity
thickness, wake amplitude, wake offset and wake width respectively. The equation is a combination of
two hyperbolic tangent profiles and a Gaussian distribution. One of the hyperbolic tangent profiles
simulates the mixing layer between the primary jet and secondary stream, whereas the other one
simulates the mixing layer between secondary stream and the ambient. The Gaussian distribution part of
the velocity profile simulates the wake of the inner nozzle, that separates the primary jet and secondary
stream. Figure 2 shows sample synthetic velocity profile along with their spatial derivative for different
values of Wamp , viz., 0, 0.2, 0.5, and 0.7. The values of other parameters of these synthetic profiles are 

as follows: h = 0.7, θI = 0.1, θII = 0.14, = 2, Wamp = 0.1, Woff = 1. In Fig. 2b the arrows denote 

inflection points in the velocity profiles. As seen in the figure, a typical synthetic profile consists of three
inflection points. Each inflection point is found to be associated with one instability mode.

Flows for which pressure at any given cross section is constant, and Pr ≈ 1, density can be found
using Crocco relation [4, 19]:

(21)

where

(22)

Here subscript ‘0’ refers to the stagnation condition.
Next, the boundary conditions required to solve (17) need to be discussed. Along the centerline of

the jet, u– = ρ– = 1 and u–′ = ρ–′ = 0, where ‘′’ denotes differentiation in the radial direction. At sufficiently
large distance away from the jet, i.e., r→∞, u = 0, ρ– = T1/T∞ and u–′ = ρ–′ = 0. These conditions fix the
value of the pressure eigenfunction at the boundary through Bessel and Hankel function. Interested
readers are referred to the work of Panickar and Raman [14] for further details.
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3. COLD JETS
We now investigate the influence of different parameters on the characteristics of Kelvin-
Helmholtz type instabilities. Figure 3 shows typical pressure eigenfunctions of different
instability modes associated with different inflection points in the velocity profiles. Each
subfigure shows two eigenfunctions, one for the axisymmetric (n = 0) mode and one for the
helical mode (n = 1). Figure 3a shows eigenfunctions of the instability modes associated with the
inflection point along the interface between the primary jet and the secondary jet. We refer to this
mode as ‘Shear Layer Mode I’. Figure 3b shows the eigenfunctions associated with the inflection
points along the the interface between the secondary jet and the ambient. We refer to it as ‘Shear
Layer Mode II’. In Fig. 2b one can see that the wake of the inner nozzle gives rise to an additional
inflection point along the interface between the primary jet and the secondary jet. We refer to the
eigenfunctions associated with this inflection point as ‘Wake Mode I’. Note that eigenfunctions
associated with Wake Mode I have a double peak shape at the inflection point (see Fig. 3c ),
unlike Shear Layer Mode I and Shear Layer Mode II, which have a single peak at their respective
inflection points. One can see that all the axisymmetric mode (n = 0) eigenfunctions have finite
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amplitude at the center of the jet. Whereas, the pressure amplitude of the helical mode (n = 1)
eigenfunctions becomes zero at the center of the jet.

We first evaluate the influence of Wamp on the instability characteristics of Shear Layer Mode I,
Shear Layer Mode II and Wake Mode I for n = 0, i.e., axisymmetric mode. Figure 4 shows the influence
of Wamp on the growth rate of Shear Layer Mode I (Fig. 4a), Shear Layer Mode II (Fig. 4b) and Wake
Mode I (Fig. 4c). One can see that introduction of the wake, with increasing wake deficit (Wamp) has a
strong destabilizing effect on Shear Layer Mode I. Increasing Wamp increases both maximum growth
rate and range of unstable frequencies. For the synthetic profile with Wamp = 0.6, the maximum growth
rate has increased by an order of magnitude. For smaller values of Wamp, the range of unstable
frequencies grows very fast with increase in Wamp. However, increasing Wamp beyond 0.4 does not
increase the range of unstable frequencies. Introduction of the wake increases the growth rate of Shear
Layer Mode II too. However, compared to Shear Layer Mode I the impact of the wake on Shear Layer
Mode II appears to be very marginal. Figure 4c shows the influence of the wake on the growth rates of
Wake Mode I. One can see that as the wake deficit (Wamp) reduces, so does the maximum growth rate
of Wake Mode I. Note that as the wake diminishes, the maximum growth rate approaches zero, i.e.,
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Wamp → 0 ⇒ −Im(α) → 0. Reduction in the maximum growth rate is accompanied by an increase in
the range of unstable frequencies. Figure 5 shows phase velocities of the corresponding cases shown in
Fig. 4. Increasing Wamp is found to reduce the phase velocity of Shear Layer Mode I and Wake
Mode I. However, for Shear Layer Mode I the effect is visible only at higher wavenumbers, whereas
for Wake Mode I it is consistent across all wavenumbers. The wake deficit (Wamp) seems to have very
little effect on the phase velocity of Shear Layer Mode II.

We now evaluate the effect of compressibility, i.e., Mach number, on the stability characteristics of

Shear Layer Mode I, Shear Layer Mode II and Wake Mode I. We use the Wamp = 0.7 profile with 

shown in Fig. 2 for our study. Figures 6 and 7 show the influence of compressibility on the growth
rate and phase velocity respectively. One can see that increasing the Mach number reduces the
maximum growth rate of both Shear Layer Mode I (Fig. 6a) and Shear Layer Mode II (6b). Note that
for both the shear layer modes, by increasing the Mach numbers up to 1.5, the range of unstable
frequency reduces. However, above Mach number 1.5, the range of unstable frequency slightly
increases. In the case of Wake Mode I, up to Mach number 1, the maximum growth rate and the range
of unstable frequencies reduce. However, above Mach number 1.0, both maximum growth rate and
the range of unstable frequencies start to grow. As far as the phase speed is concerned, in Figs. 7a
and 7b one can see that, for both shear layer modes up to Mach number 1.5, the change in the phase
speed is marginal. However, above Mach number 1.5, increasing the Mach number significantly
increases the phase speed.

At this point we would like to mention that, for unbounded 2-D planar mixing layers as per linear
stability theory compressibility provides a stabilization effect [20, 21], i.e., by increasing the Mach
number the maximum growth rate of the mixing layers approaches zero. However, experimental
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evidence has shown that, even at very high Mach numbers the shear layer growth rates do not fall
below a minimum growth rate [22]. Dimotakis and Zhuang [2] addressed this discrepancy using
linear stability analysis of the wake dominated mixing layers. They found that the wake of the
splitter plate that separates the low speed stream from the high speed stream, provides a strong
destabilization effect. Figure 5a in their work shows that, for pure mixing layers – without wake –
the maximum growth rates become zero at sufficiently high Mach number. However, for the wake
dominated mixing layers this is not the case. The presence of the wake counteracts the stabilization
effect provided by the compressibility and prevents the mixing layers to become stable at high
Mach numbers.

Figure 8 sheds light on the counteracting effect of compressibility and the wake of the inner nozzle
for Shear Layer Mode I (Fig. 8a) and Wake Mode I (Fig. 8b) of coannular jets. In Fig. 8a the
destabilizing effect of the wake on Shear Layer Mode I is evaluated for Wamp ranging from 0 to 0.7. In
this figure, for the case Wamp = 0, increasing the Mach number, the maximum growth rates
monotonically approach zero – similar to 2-D planar mixing layers. However, for the wake dominated
radial mixing layers (cases for which Wamp > 0) the counteracting effect of wake against
compressibility is different from the 2-D planar mixing layer. Unlike wake dominated planar mixing
layers, in the case of wake dominated radial mixing layers, the wake fails to counteract the stabilization
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effect of compressibility. This is apparent from the fact that, on increasing Mach number, even for wake
deficit as high as Wamp = 0.7 the maximum growth rate of Shear Layer Mode I monotonically
approaches zero. For Wake Mode II (see Fig. 8b) different ranges of Mach numbers show different
trends in the growth rate. Starting from M = 0 and increasing Mach number up to 1.5, reduces the
maximum growth rate. Increasing Mach number above 1.5, up to 2.25, increases the maximum growth
rate. Beyond M = 2.25 the growth rate starts to fall off.

4. HEATED JETS
We now examine the stability of heated jets by varying the temperature ratio for the profile with

Wamp = 0.7 at Mach numbers 0.5 and 1.

Figure 9 shows profiles of static temperatures for different temperature ratios at a Mach number

of 1. Note that these temperature profiles are obtained by applying the Crocco equation 21, on the
velocity profile with Wamp = 0.7 shown in Fig. 2a. Note that for the present analysis we consider both
the primary jet and the secondary jet to have same stagnation temperature.

Figure 10 shows the influence of the temperature ratio , at Mach numbers of 0.5 and 1, on the

growth rates for various stability modes. In Fig. 10a one can see that, for Shear Layer Mode I,
increasing the temperature ratio reduces maximum growth rates for both Mach numbers, i.e., 0.5 and
1.0. As far as the range of unstable frequencies is concerned, it increases upon heating the jet. The
aforementioned observations in the context of Shear Layer Mode I, apply to Shear Layer Mode II (refer
Fig. 10b) too. Figure 10c shows that for Wake Mode I, the growth rate trends with respect to the heating
of the jet are complicated. We will elaborate on them in detail while explaining Fig. 12. In Fig. 11 one
can see that heating the jet always increases the phase speed, irrespective of the Mach number and type
of the stability mode.

We now examine of the maximum growth rate of Wake Mode I for different Mach number across

a range of temperature ratio = {1, 1.5, 2}. In Fig. 12 one can see that upon increasing the temperature

ratio, the maximum growth rate peaks at a certain temperature ratio, and then falls off. The temperature
ratio at which the maximum growth rates peaks depends on the particular Mach number. For the range
of Mach numbers and temperature ratios tested, one can see that upon increasing the Mach number, both
the temperature ratio at which the maximum growth rate peaks and the maximum growth rate itself
reduces.
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We now shift our focus to the helical modes, i.e., n = 1. We compare the stability characteristics of
the helical mode with that of the axisymmetric mode for different values of Wamp. We do this
comparison for all the three radial modes, viz., Shear Layer Mode I (Fig. 13), Shear Layer Mode II
(Fig. 14) and Wake Mode I (Fig. 15). As apparent from these figures the influence of the azimuthal
wavenumber on the stability characteristics of the radial modes is marginal.
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5. RADIATING MODES
In the frame of reference of the instability waves, if both the the primary jet and the secondary jet are
supersonic, then such instability waves are referred to as the supersonic mode. Mathematically this is
equivalent to Mc1 > 1 and Mc2 > 1. Here Mc1 is convective Mach number of the instability wave of the
primary jet and Mc2 is convective Mach number of the instability wave of the secondary jet. Definitions
of these convective Mach numbers are given in Equation (23). Eigenfunctions associated with the
supersonic modes persist several diameters away from the inflection points, unlike Kelvin Helmholtz
instabilities for which pressure perturbations are mainly situated across the inflection point. Having
direct relevance for the aeroacoustics, these modes are sometimes referred to as radiating modes.

Following the work of Fang and Reshotko [16] we now derive a criterion, in terms of phase
velocities cph1 and cph2 of the instability waves, for the existence of the radiating supersonic modes.
Here cph1 and cph2 refer to the phase velocity of the instability waves, with respect to the primary jet
and the secondary jet respectively. Convective Mach numbers Mc1 and Mc2 of the instability waves,
with respect to the primary jet and the secondary jet respectively, are as follows.
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The condition for the radiating supersonic modes is

(26)

Figure 16a represents this condition graphically. It is only when the phase velocity of the instability
waves lies within the area enclosed by the curves (cph1)critical and (cph2)critical, that the instability waves
can radiate. Figure 16b represents (cph1)critical and (cph2)critical for different velocity ratios ‘h’ and

temperature ratios ‘ ’. As one can see for h = 0.7 and for = 1 and = 1.5, for the range of 

Mach numbers considered there exists no radiating mode.

6. CONCLUDING REMARKS
Coannular jet velocity profiles without any wake component in them, typically show only two
instability modes, viz., one associated with the inflection point in the shear layer between primary jet
and secondary jet (referred to as Shear Layer Mode I in the present paper) and the other one associated
with the inflection point in the shear layer between the secondary jet and the ambient (referred to as
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Shear Layer Mode II in the present paper). Introduction of the wake in the shear layer between the
primary jet and the secondary jet introduces an additional instability mode, i.e., Wake Mode I. To
investigate the influence of the inner nozzle wake on the stability characteristics of these different
instability modes, a compressible Rayleigh flow solver, using a shooting method, in radial coordinates
has been developed. For better computational performance, the solver incorporates the phase velocity
formulation to find the solution in wavenumber.

The key findings from the present work are as follows.

1. For radial mixing layers, formed downstream of the inner nozzle, the destabilization effect of the
wake is not strong enough to counteract the stability effect due to compressibility. For the
synthetic profiles tested in the present study, upon increasing the Mach number the growth rates
always approached zero monotonically.

2. Heating the jets is found to stabilize both the shear layer instabilities mentioned in this work. As
far as the wake instability is concerned the trend is non-monotonic. For small temperature ratios,
the maximum growth rate of Wake Mode I increase, whereas for higher temperature ratio it
decreases.
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In addition several other observations were made:

1. For a given Mach number, increasing the wake deficit increases the maximum growth rate of
Shear Layer Mode I and Wake Mode I, whereas it marginally reduces the growth rates of Shear
Layer Mode II.

2. Apart from the shape of the eigenfunction, the trend in the phase velocities, is one of the other
features that distinguishes the wake mode from the shear layer mode.

3. Changing the azimuthal mode number from n = 0 to n = 1 brings negligible changes to the
stability characteristics to any of the three modes.

4. All findings mentioned above, except the one with respect to the compressibility effect, are
consistent with trends observed for planar shear layers formed downstream of the splitter plate.
For planar shear layers the presence of the wake of the splitter plate counteracts the stabilization
effect provided by compressibility. As the convective Mach number exceeds unity, the presence
of the wake increases the growth rate of the shear layer mode [2].
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