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ABSTRACT
Superhydrophobic surfaces have received considerable attention in recent years. The
surface has a strong water-repellent characteristic that could produce slip flow and drag
reduction. The coating traps air within its micropores, such that a submerged moving
body experiences shear-free and no-slip regions over, respectively, the air pockets and the
solid surface. This, in turn, holds promise for a broad range of applications. Longevity of
the entrapped air is an outstanding problem for these coatings. Under pressure and
flowing water, the air micropockets eventually dissolve into the ambient water or burst
and diminish. Herein, we analyze from first principles an air mass transfer problem.
Using integral methods, we extend our prior laminar flow solution to turbulent flows. We
introduce an effective slip to the turbulent boundary layer characterized by a modified
1/7-power law velocity profile. We then introduce the hydrodynamic solution to the two-
dimensional problem of alternating solid–water and air–water interfaces to determine the
convective mass transfer of air’s dissolution into water. This situation simulates spanwise
microridges, which is one of the geometries used for producing superhydrophobic
surfaces. The decoupled mass-transfer problem is solvable using an approximate integral
method previously optimized by Reynolds, Kays, and Kline (1958). A mass-transfer
correlation is derived as a function of the surface geometry (or gas area fraction),
Reynolds number, and Schmidt number. Longevity, or time-dependent hydrophobicity,
could be estimated from the resulting mass-transfer correlation. As expected, turbulence
greatly enhances the rate of convective mass transfer, and thus superhydrophobicity is
not maintained as long as it would be under corresponding laminar flow conditions. 

1. INTRODUCTION 
Superhydrophobic surfaces employ optimally designed surface chemistry and roughness to repel water.
They are characterized by water droplets beading on the solid surface at static contact angles (CA)
exceeding 150°, and by significantly low contact-angle hysteresis. Amongst several others, examples of
such surfaces in nature are the self-cleaning lotus leaves [1]. When submerged, these surfaces can entrap
air between their micro- or nanostructures resulting in a surface with alternating air–water and solid–water
interfaces. The presence of the air–water interface is responsible for the “slip effect”, resulting in a
reduction in the skin-friction drag exerted on a moving surface [2, 3]. Rothstein [2] reports drag reduction
exceeding 40% and 50% in, respectively, laminar and turbulent flows, although Gad-el-Hak [4] argues
that the turbulent flow results are less reliable.

Most engineered superhydrophobic surfaces are made up of microposts or microridges
manufactured via advanced microfabrication techniques [5, 6]. Large-scale manufacturing of such
surfaces is prohibitively expensive. An alternative solution to circumvent the high cost is to produce
surfaces made up of random deposition of hydrophobic particles or electrospun fibers [3]. Along with
the challenges of microfabrication, the lifetime of the surface is also a factor for the applicability of the
coating. As long as air pockets are entrapped in the coating’s pores, the surface remains



superhydrophobic. In other words, the degree of hydrophobicity depends on the amount of air
entrapped on the surface. The longevity of a superhydrophobic coating–how long the surface could
maintain the entrapped air–is critical, especially in underwater applications. When the surface is
subjected to flow, the longevity decreases because the flow enhances the dissolution of the entrapped
air into water [7]. Once all air has escaped, the surface becomes completely wetted (Wenzel state [8]).
It is expected that the longevity will decrease even more as a result of turbulence; however, there is
limited literature on this subject [2, 9, 10, 11]. 

In this work, we develop a first-principles model using the integral method to determine the mass
transfer of air from a superhydrophobic surface (i.e., longevity of the surface) subjected to turbulent
flow. The roughness of the surface is assumed to be in the form of spanwise microridges. This is an
expansion of our previously published laminar model [12], but with notable adjustments to
accommodate the turbulent regime. A single phase flow is assumed with linearized boundary
conditions. It is recognized that more accurate modeling may be achieved. However, these may not
provide the same ease as that of the integral method employed herein. Next section describes our
theoretical approach. This is followed by Section 3 in which the results are presented and a 
mass-transfer correlation is developed. Conclusions are given in Section 4. 

2. THEORETICAL APPROACH
Turbulent boundary layer flow is considered over a superhydrophobic surface comprised of spanwise
microridges, as shown in Figure 1. The solution is obtained for different Reynolds numbers (based on
plate length), Schmidt numbers (ratio of water kinematic viscosity, v, to mass diffusivity of air into
water, D), and gas area fractions (ratio of shear-free surface area to total surface area). After a relatively
long starting length of 1 m, the plate is considered as alternating sections of no-slip solid–water
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Figure 1. (a) SEM image of spanwise ridges to effect superhydrophobicity, from Maynes et
al. [13]. (b) Schematic of both hydrodynamic and mass-transfer boundary layers evolving

over microridges [12]. 



interface with zero concentration of air (same as the pure water assumed in the freestream, C∞ = 0) and
free-shear air–water interface with 100% saturation of air Cs. The hydrodynamic boundary layer
thickness, δ(x), continuously evolves in the flow direction. At each change in position x1, x2, …, there
is a newly growing mass-transfer boundary layer thickness, δC (x), due to the abrupt change in the
concentration boundary condition. 

As was the case in our previous paper [12], two observations are noteworthy. First, the integral
relations developed are exact in the laminar case and near-exact in the turbulent flow case. However,
the velocity and concentration profiles inserted into the integral relations are approximate. Solutions
obtained are therefore approximate. Second, the concentration boundary condition at the solid-water
interface downstream of the starting length should be, strictly speaking, [∂C /∂y]y = 0 = 0, i.e., zero-
mass-flux boundary condition. The boundary condition at the air-water interface is correct as stated
above, [C ]y = 0 = Cs. However, the use of mixed Dirichlet and Neumann boundary conditions would
preclude the employment of the superposition principle to be described in Section 2.2. The present
model, though difficult to realize in practice, provides a first-principles analytical result, which is
indeed rare. In the analogous heat transfer problem, alternating hot and ambient temperatures are used
in order to enable the use of the superposition principle. This situation requires heated and cooled
portions of the plate, which is different from heated and unheated portions. 

2.1. Integral Method 
The integral method is derived from the momentum and species conservation equations. The
following integro-differential equations are universally accepted, for both laminar and turbulent
flows [14]: 

(1) 

(2)

where, for turbulent flows, u(y) is the mean velocity profile, U∞  is the freestream velocity, δC(x) is the
concentration boundary layer thickness, Stm is the Stanton mass number, and θ is the dimensionless mean
concentration profile of dissolved air in water. If the species equation is to take the form written in Equation
(2), it is assumed that the difference between Cwall and C∞  is constant [15]. In the present formulation, this
is postulated to be the case over a particular segment of the surface, i.e. solid portion or air cavity.

The integral method needs an appropriate approximation for the mean velocity and concentration
profiles. For turbulent boundary layers, the widely accepted profiles are [16]: 

(3)

(4)

It is worth mentioning that the mass transfer solution is decoupled from the hydrodynamic problem,
and that the concentration profile, Equation (4), is valid for different velocity profiles at different
locations along the plate. Superhydrophobic surfaces generate slip flow, which could be characterized
by the effective slip length S [17]. Figure 2 schematically shows the effect of slip on the velocity
profile. The 1/7-power law velocity profile for no-slip condition, Equation (3), could be modified to
include a slip flow. 
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(5)

From Equation (5) and from the figure, it is obvious that u (0) is a constant, Uslip, while the equation
retains the one-seventh power approximation of turbulence. Solving the integral equations for a
turbulent boundary layer is complicated owing to the existence of indefinite result in the derivative of
the velocity and concentration profiles at the wall. In 1958, Reynolds et al. [15] proposed what is now
a widely accepted solution by assuming that the momentum eddy diffusivity, εM , is equal to the
concentration eddy diffusivity, εC , and that their respective diffusion mechanisms are 

(6)

(7)

where τbl (x, y) is the shear stress, ρ is the density of the flowing fluid, and m′′
bl (x, y) is the mass flux of

air to dissolve in water.* Strictly speaking, the two equations above hold only far away from the wall
where viscous effects are negligible and all the momentum and mass transfer are due to turbulent eddies
[15]. Reynolds et al. constructed εM and εC so that the wall shear and mass flux are finite and have their
correct values even at the wall. Equation (6) could be solved for εM utilizing the full momentum
equation and tedious algebra to yield 

(8)

The eddy diffusivity in this formulation is zero both at the wall and at the outer edge of the
hydrodynamic boundary layer. Equation (1) is rewritten as 
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Figure 2. Schematic diagram of velocity profiles for flow over flat plate in case of (a) no slip;
and (b) slip flow.

*Reynolds et al. (1958) considered a heat transfer problem. However, barring dissipation effects, the heat transfer and mass transfer problems are identical.



Christina A. Barth, Mohamed A. Samaha, Hooman Vahedi Tafreshi and Mohamed Gad-el-Hak 147

Volume 5 · Number 3+4 · 2013

Similarly, Equation (7) could be solved for the Stanton mass number 

(10)

where the skin friction coefficient is defined as Cf ≡ 2τbly = 0/(ρU2
∞). The Stanton mass number can be

expressed as Stm = hm /U∞. The term hm is the air mass transfer convection coefficient. Thus, Equation
(10) could be readily solved for hm provided that the hydrodynamic boundary layer thickness is already
computed. Reynolds et al. [15] used the approximation δ(x) ~ x 4/ 5. However, due to the slip nature of
a superhydrophobic surface, Reynolds et al.’s approximation is not valid in our case. The original
equation was formulated based largely on experimental data in turbulent pipe flow. Therefore, we
assume our base equation as 

(11)

where the right hand side is an empirical correlation. We attempted to solve for δ using Equation (5).
However, for ease of calculations and because the integral analysis is an approximate method, the
hydrodynamic boundary layer thickness is empirically expressed as [18]: 

(12)

2.2. Convection Coefficient
The integral method could be used to find the value of the local convection mass transfer coefficient,
which could be substituted in the following equation to obtain the average coefficient along the entire
plate. The superposition procedure was previously discussed by Barth et al. [12] and Bejan [14], and
leads to the following equation for the total mass transfer convection coefficient 

(13)

where n is the total number of peaks and troughs (Figure 1), L is the extent of the entire
superhydrophobic region, and hi(x) is a local mass transfer convection coefficient. 

We developed a code using Mathematica to solve the above equation for the Reynolds number range
of 2 × 105–106. We also changed the Schmidt number according to a temperature range of 
25–5°C. The change in temperature influences the dynamic viscosity µ, mass diffusivity D, and
Schmidt number Sc, according to the following equations [14]: 

(14)

(15)

where T0 is the reference temperature value of 20°C, and T is any temperature at which both the
diffusivity and Schmidt number are calculated. The resulting range of Schmidt numbers is 313–964.
We ran our code for a gas area fraction (the ratio of free-shear area to the total surface area) of 50–90%.
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The periodicity of the microridges of the surface (Figure 1) is fixed at 200 µm. Gas fraction increases
are achieved by reducing the width of each ridge. The solution is obtained for a total of 1000
consequent sections (500 peaks and 500 troughs) following the prescribed starting length of 1 m. 

2.3. Slip Length 
We utilized the values of effective slip length originally found by our previously published laminar flow
simulations [12]. To our knowledge, there does not presently exist more accurate data for effective slip
length for turbulent flows. The closest value is that provided by Rothstein’s group [9, 10]. For one
particular Reynolds number, Rothstein et al. found an approximate slip length of 120 µm, with a fixed
pitch of 120 µm. When our code utilized that slip length, in contrast to the one computed from full
numerical simulations of the laminar boundary layer, we obtained a percentage change in the average
mass flux of 42.5%. 

3. RESULTS AND DISCUSSION 
3.1. Effect of Surface Microstructure and Flow Properties 
The above system of equations is solved numerically to show the impact of Reynolds number, Schmidt
number, and gas area fraction on the rate of air dissolution into water. The dimensionless air mass
transfer convection coefficient (Sherwood number) and mass flux are calculated to investigate the rate
of air mass dissolution into water at the superhydrophobic surface. 

Figure 3 shows the dimensionless air mass transfer convection coefficient and mass flux calculated
using both the turbulent and laminar models at different Reynolds numbers. The laminar model was
previously described by Barth et al. [12]. As expected both the average mass flux and Sherwood
number are substantially increased in case of turbulent flow. The presence of turbulence enhances the
air dissolution in water, and the mass flux is increased by one order of magnitude. 

Figure 4 shows Sherwood numbers versus gas area fractions at different Reynolds and Schmidt
numbers. It is obvious that as Reynolds number increases, Sherwood number increases because the
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flow becomes more turbulent, which leads to enhancing the dissolution of air into water. Furthermore,
the increase of gas fraction increases the Sherwood number due to the enlargement of the surface area
subjected to air mass transfer. Finally, the Sherwood number increases with Schmidt number. These
trends qualitatively agree with both our laminar flow results [12] and the canonical no-slip case [14]. 

3.2. Longevity 
Longevity of superhydrophobic surfaces depends on how long the surface can entrap air. Figure 5
shows the effect of Reynolds and Schmidt numbers and the impact of gas area fraction on the rate of
air dissolution into water. It is obvious that the mass flux is enhanced by increasing the gas area fraction
and Reynolds number. However, the mass transfer decreases with Schmidt number owing to the
reduction in the mass diffusivity of air into water, D. This agrees qualitatively with the results reported
for the laminar studies [7, 12]. Mass transfer is directly related to the lifetime of a superhydrophobic
surface, or surface longevity. Higher mass flux indicates an acceleration of air dissolution into water,
i.e., reduced longevity. 

3.3. Mass-Transfer Correlation 
We propose a correlation to express the Sherwood number as a function of Reynolds number 
(flow property), Schmidt numbers (fluid property), and gas area fraction (surface morphology) in the
form 

(16) 

The well known classical correlation for mass-transfer forced convection from a solid flat plate (with
no-slip condition; φg→ 0) subjected to a turbulent flow reads. 

(17) 

As φg → 1, there is near perfect slip, and the hydrodynamic boundary layer is very small compared
to the concentration boundary layer. In that case, u (y) ≈ U∞, and the differential mass transfer equation
could readily be integrated. The solution is 

(18)

The following correlation is proposed for slip flow. The formula is similar to that presented in our
laminar studies [12], but with a modified exponent of the Reynolds number to accommodate the effect
of turbulence 
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(19)

where Sh is the Sherwood number averaged over the superhydrophobic region. In the above correlation,
if we allow the gas area fraction to approach φg = 0 and φg = 1 (the two extremes of gas area fraction),
the Schmidt number exponent becomes, respectively, 1/3 and 1/2, which agrees with the canonical
cases of respectively no slip and perfect slip. Regression analysis of the data presented in Figure 4
yields K = 0.1083. This value is not too different from K = 0.145 computed for the laminar case [12].
Of course the different Reynolds number exponents in the laminar and turbulent cases greatly affect the
respective values of the Sherwood number.

4. CONCLUSIONS 
In this work, a first-principles model was developed to predict the rate of convective mass transfer of
air from superhydrophobic surfaces subjected to turbulent flow. The proposed integral method is
approximate; however, it does not require the computer-intensive calculations demanded by direct
numerical simulations. The mass transfer problem was solved using the integral method, and a 
mass-transfer correlation was developed. The estimated rate of mass transfer reflects how long the
surface can keep its hydrophobicity, i.e., longevity. While turbulent flow over superhydrophobic
surfaces promise to increase drag reduction by about 20% more than that of laminar flow, the longevity
is found to decrease by one order of magnitude. This work could be extended to include different
boundary conditions and more accurate approximations for the hydrodynamic boundary layers and
effective slip length. 
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