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ABSTRACT

This paper provides details on the optimization of phase and amplitude of perturbations
for simulated free shear layer flows. The goal of the optimization is to maximize or
minimize the rate of growth of the shear layer, based upon first-principles physics-based
simulations that represent solutions to the fully nonlinear Navier-Stokes equations.
These simulations have been obtained using a unique method [1, 2] that considerably
reduces the computational burden normally associated with obtaining such solutions. In
fact, the development of active flow control methodologies is often based upon reduced
order models of the Navier-Stokes equations to avoid this computational overhead.
Various regression methods were used to approximate the shear layer thickness as a
function of the phase and amplitude of perturbations used to excite the flow dynamics
as a proxy for using a simulation based upon first principles, in order to reduce
computational burden even further. It was found that nonlinear regression methods
overall outperformed linear regression methods, owing to the fundamentally nonlinear
nature of the data.

1. INTRODUCTION

Free shear layers or mixing layers are ubiquitous in real world applications. For example, they are
found in flow reactors, cavity flows, flows over aircraft wings at angle of attack, bluff body wakes, jets,
etc. Often, there is a need to optimize the dynamics of such flows. The objective may be to minimize
or maximize the shear layer growth rate. In flow reactors, we seek to maximize it and in other
applications to minimize it. Maximization of growth rate produces efficient mixing of fluids in flow
reactors and thus an efficient reaction mechanism. Minimization of the growth rate suppresses the
cavity tones or jet exhaust noise, for example.

Many reduced order models (ROM) [3-5] have been proposed for mixing layers that can be used to
optimize such flows. These ROM are an approximation to the physics of such flows, but they solve the
control or optimization problem quickly. On the other hand, first-principles modeling of mixing layers
is an exact representation of the physics of such flows, but they take too long if we seek to optimize
these flows. First principles modeling requires the solution of Navier-Stokes equations of fluid
dynamics that are highly nonlinear. These solutions on present day supercomputers take on the order
of hours to days to compute. Therefore they are not a viable route for optimization of these flows in
real world applications. But, a unique method [1, 2] has been devised to optimize such flows that is
based on first principles. This method uses transformations between spatially growing mixing layers
and time-evolving mixing layers that eliminates the need to compute the spatially growing layer
directly. Instead, a time-evolving layer is computed that takes orders of magnitude less time. The
execution speed of this approach is on the same order as the ROM mentioned earlier. Hence, we focus
on this approach in this study to generate some canonical solutions (data) rapidly and we explore
various methods of developing a proxy or a surrogate to model the data thus generated , based on the
time domain results. Although our investigation is motivated by the development of an active flow
control methodology, our primary purpose is to conduct a performance assessment of surrogate
modeling for the mixing layer of interest. Treatment of the flow control problem will be introduced in
a sequel paper.
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2. METHODOLOGY
A variety of regression methods can be used to obtain the best fit to data generated from the simulations
discussed in Sec. 1. The motivation is to use the resulting model as a data-driven proxy; i.e., an
equivalent simulation to the physics-based Navier-Stokes equations at a greatly reduced computational
burden, similar to what was performed by Pressburger ez al. [6]. This is also called “surrogate modeling.”
To facilitate selection of the best performing regression method, the NMSE (Normalized Mean Square
Error) metric was used. This metric aided hyperparameter selection for the applicable regression
methods by offering the ability to optimize the NMSE as an objective function of the hyperparameters.
The normalized mean-square error (NMSE) [7] is the mean-square error divided by the variance of data;
this allows for comparing regression techniques because it compensates for the difficulty of fitting the
data. Low values of NMSE indicate a better fit. It is a traditional metric for assessing the goodness-of-
fit of a regression algorithm which governs model fidelity, and is often a better choice than using the
RMS (root-mean square) due to the ability to compare regression algorithms more equitably.
Normally, the optimization used for regression can be posed as shown in Eqn. 1, with the NMSE
metric as the objective, where the index k represents the (phase, amplitude)-tuple index, y, represents
the actual target parameter value, and ¥, represents the estimated target parameter value. The target
parameter value of interest for our application is the free shear layer thickness at a simulation time
corresponding to the first pairing. Any number of optimization techniques can be used to solve this
problem, however here a simple grid search was sufficient based upon the limited number of tuples
(P = 102) used to fit a model. An f-fold cross validation approach was also used for each regression
method highlighted in the following subsections, with one exception. Cross-validation is used in order
to prevent overfitting and improve the performance of the model based upon training data, and /= 10
folds are used for the relevant regression methods in this paper. The method is implemented by
segregating the P tuples into f partitions, or folds, and f— 1 folds are used to predict the f hold out
partition for validation purposes. The process is repeated iteratively for f folds acccordingly, which
cumulatively adds to the numerator of J shown in Eqn. 1 with each iteration.
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P = number of (phase;  amplitude) tuples
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Ve ) = fug, W)
u; = Vector of regressors
A = Regression-specific hyperparameter
S = Regression-specific hyperparameter tuning domain

2.1. /, Regularized Linear Regression (Ridge Regression)

One of the regression methods tested was linear ridge regression, in which the associated regular-
ization coefficient was used as a hyperparameter to optimize the MSE as a function of how well
conditioned the solution should be. This is also called “Tikhonov regularization”. A well-posed or well-
conditioned problem is one that yields a solution that meets the criteria of existence, uniqueness, and
robustness (e.g. low sensitivity to natural variation in the data). The linear regression techniques to be
evaluated are linear in the parameters to be estimated only, however basis functions for the regressors
themselves to be studied will involve both affine and quadratic regressors in the same vein as was
presented in both [6] and [8]. Let u; represent a vector of regressors for observation i, then scalar
elements of the vector can represent linear regressors, u;, and/or quadratic regressors, u?. Note that the
use of quadratic regressors include the u? regressors as well as the product uilt;.

2.2. Support Vector Regression (SVR)
In this subsection, a brief description of the n—support vector regression algorithm is provided, as
documented in [9]. Given a finite set of multivariate observations, it is possible to reconstruct an input
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and target set that takes the form shown in Eqn. 2, where U 4 [ug ... up] is an input data matrix of size
(P x 2) and the corresponding output is denoted by y A1 Yo --- ypl7, called the target vector. Thus, there
are 2 parameters and P observations. Once the n—support vector regression algorithm is appropriately
trained, it is possible to estimate a target function f(u;) that imposes an upper bound of 1 on the actual
number of observed targets {y;}t- o for all the input data {u, € R*}"_,.

y=f(U) (@)

The target function f(*) is a linear combination of specific weighted training and test points with an
additional offset which is often known as bias, p. The chosen training instances with m non-zero
weights are called support vectors (SVs, u;) and they are the statistically sufficient representatives of
the model. This implies that given the model, any training points not associated with SVs can be
discounted without changing the performance of the algorithm. The target function is shown in Eqn. 3.

f(uk)=i(ai—&i)<ui,uk>+p 3)

The support vectors and their corresponding weights, ; and @; result from the solution of a
quadratic programming optimization problem in dual form. The expression of the primal problem is
shown in Eqn. 4. Further details on the cost function and optimization problem can be found in [9].

| Qo
minimize  P(q, C, &/, &, )=quT +CE & +&)
k=0

subjectto  (z, —-q'@(u) - p)=n+&;
(z,-q'p)-p)=n+&;
§.5 =0
C>0 @

C and n are user specified regularization and precision parameters respectively. They are chosen
according to the practical guidelines set forth in [10]. &, & are non-zero slack variables, g is the weight
vector normal to the separating hyperplane, p is the bias offset parameter, ¢(u;) represents the
transformed image of u;, € R? in the same Euclidean space, and k € [0, ..., P]. In this paper we have
used the RBF (Radial Basis Function) as the mapping function given in Eqn. 5, where o represents the
hyperparameter of the Gaussian function.

o

<”[suk>=exp(—%wj .

The hyperparameter o, also known as the “kernel width” parameter, controls the overall scale in
horizontal variations. More details on SVR can be found in other work [11].

2.3. k-Nearest Neighbor Regression (k-NN)

k-NN, or k-nearest neighbor regression is most useful for mapping data that is often represented in high-
dimensional spaces to lower dimensional manifolds. As such, it is often used for contrast to linear
dimensionality reduction techniques such as PCA (Principle Components Analysis). In fact, this
regression technique may be very well suited to the task at hand, as it is well known that fluid flow
governed by the nonlinear Navier-Stokes partial differential equations contain infinite degrees of freedom.
Techniques for representing such data in lower dimensional nonlinear manifolds have also been studied
and well understood for some time now [12] through the Lorenz model. Although the input space spanned
by the (phase, amplitude)-tuple is limited to two dimensions, it would still explicitly benefit from the
implicit dimensionality reduction capability that k-NN regression offers. The (phase, amplitude)-tuple can
be considered as the latent points defining the low-dimensional representation of the data space (the shear
layer thickness), which contains high dimensional patterns. k-NN regression assumes that points in the
data space that are located in close proximity to each other have similar output values (i.e. the shear layer
thickness). As such, for novel (phase, amplitude)-tuples presented to the regression algorithm, the output
values must be located in close proximity to those k nearest points having similar patterns in higher
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dimensional space, and so the hyperparameter used for k-NN regression is the number of nearest
neighbors. More details on this regression method can be found in [13].

2.4. I, Regularized Linear Regression (Lasso)

Another regression method to be investigated is a regularized sparse linear regression method known as
LASSO (least absolute shrinkage and selection operator) [14]. Its hyperparameters are already implicitly
optimized as part of its algorithm. As such, there is no need for f~fold cross validation as distinct from the
other regression methods. A valuable benefit which can be derived from using lasso regression is that it can
be used to find influential variables, or “feature selection”, due to the nature of its /; sparsity “regularization”
penalty. Sparseness penalizes the number of non-zero coefficients associated with the linear regression,
translating to a “sparse” solution. Due to the nature of the inequality constraint associated with the
regularization penalty, the solution is achieved by appealing to the use of cyclical coordinate descent in an
iterative fashion, which yields a regularization path of candidate solutions until the algorithm runs to
completion. It has been shown [15] that lasso regression is equivalent to a simple linear correlation analysis,
which can be used to select the linearly influential variables as well. However, this feature is not very relevant
for our case in which there are only two independent variables: magnitude and phase, and thus there is no
need for feature selection. However, we use it to contrast among the other regression techniques described
in this section.

2.5. Neural Nets (NN)

The use of artificial netural networks was popularized decades ago, and has recently seen a resurgence
through a different incarnation which has been called “deep learning.” In this study we will only
consider traditional neural networks with a single layer perceptron as distinct from “deep learning”
techniques which exploit the use of multiple hidden layers. In this work, a single layer perceptron refers
to a network architecture that contains a single hidden layer in addition to separate input and output
layers. Fundamentally, neural networks offer the ability to capture nonlinearities in data by learning
weights associated with nodes in a network that are linearly combined and ultimately transformed
through a nonlinear mapping. The hyperparameter used for neural nets (NN) regression is the number
of hidden units in a single layer perceptron.

3. DISCUSSION AND RESULTS

A comprehensive listing of the results for all regression techniques and their respective near global
optima are provided in Table 2. Table 1 describes the hyperparameters used for each regression method.
Our findings indicate that nonlinear regression methods: support vector regression (SVR), k-NN
(nearest neighbor) regression, and neural networks are far superior to the linear regression methods.

Table 1. Tunable regression hyper-parameters

Regression

Method Regression Description Hyperparameter Hyperparameter description

SVR Support Vector Regression o Kernel Width

k-NN k-NN Regression k Number of nearest neighbors

LR1 Ridge (linear) regression A l, regularization coefficient
using linear regressors

LR2 Ridge (linear) regression A I, regularization coefficient
using quadratic regressors

LR3 LASSO (linear) regression A [; regularization coefficient

NN Neural Networks ny number of hidden units

Table 2. Regression results

Optimization Results SVR k-NN LR1 LR2 LR3 NN

Optimized Hyperparameter Value 1.12 2 7.9 376.5 574 x 107 4

Optimized Function Value* 0.182 0.106 243 3.64 1.054 0.148

*For the objective function shown in Eqn. 1.
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Hyperparameter Selection using k-NM regression
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Figure 1. Shear layer thickness k-NN regression results.
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Figure 2. Shear layer thickness SVR regression results.
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Figure 3. Shear layer thickness NN regression results.
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This suggests inherent nonlinearity in the data, which is also apparent in Figs. 1-3, where the fit of
these best three performing nonlinear regression techniques have been illustrated. The top panel of each
of the three figures represent the results of hyperparameter optimization. Each panel respectively
illustrates the result of a grid search, showing the NMSE as a function of the number of nearest
neighbors (kNN regression), the number of hidden units (NN regression), and the the kernel width,
o (SVR). Both the optimized function and hyperparameter values are also shown, mirroring the results
shown in Table 2.

The middle panels of each of Figs. 1-3 are identical, and illustrate a contour-filled level set view of
the actual shear layer thickness as a function of the phase shift and amplitude ratio, Ay /A, where frefers
to the fundamental wave number and s refers to the first subharmonic. The amplitude ratio spans the
space [0.5, 1.0, 2.0, 4.0, 8.0, 16.0], and the phase shift spans the space [0, /8, n/4, 37/8, ... 27]. The
color bar to the right of the panel indicates the thickness. Finally, in order to gain a qualitiative
appreciation for the results quantified in Table 2, the bottom panel of each figure provides a similar
contour plot of the surface resulting from application of the respective regression technique. This plot
provides an estimate of the shear layer thickness as a function of the perturbation phase and amplitude
for each respective nonlinear regression technique, which offers the ability to perform a qualitative
comparison to the actual shear layer thickness in the panel directly above it.

Figs. 4(a, b) show how the shear layer thickness has evolved over simulation time of 2.5 sec
corresponding to first pairing of two large structures in the free shear layer, with the phase shift ¢ as a
parameter. Fig. 4(a) represents one scenario and Fig. 4(b) represents a second scenario out of many,
based on two different forcing levels (amplitude ratios). The shear layer thickness contour plot shown
in Figs. 1, 2 and 3 represents results corresponding to all the forcing levels and the phase shifts of
perturbations used in the CFD simulation at a simuation time of 2.5 seconds. Fig. 4(a) shows results
coresponding to the forcing level of subharmonic, A, as half that of the fundamental, Ay, and
Fig. 4(b) shows results corresponding to A; = 16.0*A. Fig. 4(a) shows a linear growth up to a
simulation time of about 1.2 sec, while Fig. 4(b) shows that nonlinear growth sets in much earlier.

Figs. 5(a, b) show the passive scalar contour plots corresponding to Figs. 4(a, b), respectively, which
demonstrate a marked difference in the extent of mixing between the two forcing levels. For added
comparison, Fig. 6(a, b) and Fig.7(a, b) show the passive scalar contour plots corresponding to forcing
levels, Ay = A, Ag=2.0 * Apand A; = 4.0 * A, A; = 8.0 * A, respectively. As the amplitude of the
subharmonic increases, the growth of the free shear layer increases correspondingly.

The numerical scheme used for CFD simulation is a pseudo-spectral method, spectral in the stream-
wise direction and finite-difference in the transverse direction. This methodology is well established,
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Figure 4. Evolution of shear layer thickness with simulation time.
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Figure 6. Instantaneous passive scalar contours.

see, e.g., [16, 17].

Finally, a comparison of run-time for both training and testing all regression modes is provided in
Table 3. It is clear that the testing time for all regression methods for one set of amplitude and phase
shift is on the order of milliseconds, as measured on a PC. Due to the fundamental nature of the
algorithm, training and testing are executed simultaneously for the k-NN regression method, and as
such the testing time is blocked out. It should be noted that it takes one CFD simulation corresponding
to one set of amplitude and phase shift about 0.3 second on a Mac laptop to generate the training data
represented in the midlle panels of Figs. 1, 2 and 3. For any other combination of phase and amplitude
not reflected in these figures, it will be faster to use the surrogate models to predict the shear layer
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Figure 7. Instantaneous passive scalar contours.

Table 3. Run-time results in seconds

SVR k-NN LR1 LR2 LR3 NN
Training Time 0.0034 0.0176 0.0128 0.0238 0.001176 0.388
Testing Time 6.82 x 107 469 x 10+ 0.0108 74 %102 0.0066

thickness, rather than the CFD simulation.

4. CONCLUDING REMARKS

The resulting NMSE for LASSO and other linear regression-based techniques were unfortunately not
small enough to use as proxy for the physics-based Navier-Stokes equations. As such, we have found
that the nonlinear regression methods offer the best approximation to the corresponding CFD
simulations, both quantitatively and qualitatively. Furthermore, we have demonstrated that using any
of the nonlinear (or even linear) regression methods as a surrogate for the CFD simulation based upon
the Navier-Stokes equations reduces the computational burden considerably. The appreciable gap in
computation time achieved is thus also well below what is currently known to be required for the
development of active flow control methodologies based upon reduced order models of the Navier-
Stokes equations. The surrogate models presented here take on the order of 0.68 milliseconds testing
time for SVR method and 6.6 milliseconds testing time for NN method for each test point, whereas the
CFD simulation takes about 300 milliseconds. Clearly there is a substantial reduction in the
computational effort, using the proposed methodology.

NOMENCLATURE

Uy, Feature vector

u; Support vector

)4 Number of features/parameters

2 Target parameter

Je) Support Vector Regression (SVR) nonlinear mapping function
m Number of support vectors

A

a;, a;  Support vector weighting coefficients
o SVR bias offset parameter
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. .
~ —

S QT8 =0

SVR user-specified regularization parameter

SVR regularization parameter

SVR image transformation

Kernel function

Kernel width

normal vector, orthogonal to the minimum margin separating hyperplane

© &, SVR slack variables

Yk

Support Vector Regression (SVR) residual and Linear Dynamical System (LDS) output
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