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Abstract
An acceleration model and a jerk model are proposed in this paper for kinematic state
estimation of re-entry ballistic targets. The models proposed here use fully coupled
equations of the target kinematics, without assuming any model structure for variations
of ballistic coefficient and air density as found in the literature. The novelty of the
algorithms lies in the bootstrapped computation of the model parameter g, which is the
ratio of air density and ballistic coefficient, at every time step, utilizing the estimated
velocity and acceleration. g and its time derivatives, thus computed, are used for
parameterization of DA and DJ models for estimating position, velocity and acceleration.
This makes the algorithms inherently adaptive to the variations of the ballistic coefficient
and the air density during the re-entry trajectory. It is demonstrated that the proposed
models produce unbiased estimates of target acceleration as opposed to biased estimates
from the existing models.

Key words: Ballistic Target Tracking, Extended Kalman Filter, Endo-atmospheric
Engagement.

1. INTRODUCTION
Accurate estimation of kinematic state of re-entry ballistic targets (RBT) is one of the prime
requirements for guidance computation of an interceptor. The Proportional Navigation (PN) guidance
utilises the target-interceptor relative kinematics in the form of closing velocity (Vc) and sight line rates
(λ
.

), whereas the Augmented Proportional Navigation (APN) requires the target accelerations as well
for computation of commanded lateral acceleration. Since, these variables are not directly measurable,
these are estimated using noisy measurements from ground radars and/or on-board seekers. Given the
guidance and control specifications as well as the interceptor capability, the miss distance achieved is
determined by the accuracy of estimates of target kinematics.

The estimation accuracy, in turn, is determined by the choice of state and measurement models as
well as estimation algorithm and its parameters. The uncertainties in modelling the kinematics of RBTs
arise from the unknown mass, the so called reference area, the variation of drag and lift coefficients
with Mach number and angle of attack. Coupled to these are the effect of empirical models used for air
density and gravity.

Various estimation algorithms reported in the literature for this application include a − b − g filter [7,
12,24], Kalman Filter [2,7,12,24], Extended Kalman Filter (EKF) [2,23] and its variants, second order
EKF, Extended Interval KF [5], Iterative EKF [1,9], adaptive EKF [3,14,18], unknown Input Estimator
[8], Covariance Analysis DEscribing function Technique (CADET) [2,14], Unscented KF (UKF)
[14,18,19], Particle Filter (PF) [4,14,18] and its variants namely, Monte Carlo (MC) estimator [13,17],
Sampling/Importance Re-sampling (SIR) filter [21], etc., Maximum Likelihood Estimator (MLE) [22],
Interacting Multiple Model (IMM) [12,20,22]. Minvielle [24] presents a chronological evolution of these
estimation algorithms and their comparative merits and demerits in tracking RBTs. In most of 
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these estimators, either target acceleration is assumed to be constant [3] or position and velocity are jointly
estimated with drag coefficient (ad) or ballistic coefficient (b) or its function, assuming a particular
empirical model for its dynamics. In [1,3,9,13] ad is modelled as a constant with additive white noise. 
b is assumed to be known in [17, 14]. Further, a constant b with additive white noise has been estimated
with the kinematic state in [14,18,20,21,22,23]. An empirical model of b as a function of altitude has been
considered in [5,11]. Li and Jilkov [11] present a survey of these different dynamic model structures for
RBTs, in terms of the choice of state and output variables, variations of ballistic coefficients, etc.

However, it can be noted that the ballistic coefficient b is constant only for highly supersonic targets
[14]. It diminishes when the target velocity approaches Mach 1, due to formation of shock waves. For
a typical trajectory, bmay undergo about 15% variation in endo-atmospheric phase before interception.
It can also vary for maneuvering or spiralling targets due to the variation in the angle of attack. Hence,
the assumption of constant b is not justifiable. First order or random walk models for b are also
empirical and cannot model the variations adequately. Values of the ballistic coefficient are unknown
and vary widely among the RBTs. Hence, the assumption of known b is also not tenable. Thus, the
accuracy of acceleration computed from the estimated velocity and model parameters ad or b or g is
governed by the accuracy of the assumed empirical model.

These limitations of empirical models for parameterization of the state models are alleviated in the
present paper. Here two kinematic models of RBTs are proposed which estimate the target acceleration
and jerk directly. The significant features of the proposed schemes are summarized below.

• A Direct Acceleration (DA) model is proposed here to estimate position, velocity and
acceleration. This model does not assume that the acceleration is a constant plus a random walk
noise. Rather, the time derivative of acceleration is modelled in terms of the estimates of kine-
matic state and that of g, as given below. Using a similar approach, the Direct Jerk (DJ) model
estimates position, velocity, acceleration and jerk.

• The variables and its time derivatives are computed in bootstrapped2 mode using the
estimated velocity, acceleration and jerk. The computed y and its derivatives are subsequently
utilized for the model parameterization in the estimator employing DA and DJ models.

• Thus, the model parameter, i.e., the ballistic coefficient or a function of it is not a state element
of the estimator employing DA/DJ model. No empirical model of air density nor of ballistic
coefficient is assumed.

Thus, the estimation accuracy of target kinematics is not affected by the selection of model
structure and its parameters for ballistic coefficient. The bootstrapped computation of y and use of
it in the kinematic equation at each time step caters for the dynamic variation of this parameter
along the target trajectory. Moreover, due to variation in the ballistic coefficient, air density and
acceleration due to gravity with altitude, the target experiences substantial change in acceleration
in re-entry phase. As a result, the adopted jerk model produces better estimates than that of the
acceleration model. The estimates from the proposed algorithms have been compared in this paper
with the existing models for a realistic target kinematics and a significant improvement is shown in
acceleration estimates.

The paper is organised as follows. Section 2 describes the reported and the proposed models for re-
entry ballistic target motion and radar measurement model. The scheme for computation of model
parameters g and its time derivatives are discussed in Section 3. This is followed by simulation results
and discussions in Section 4. All the notations used through out the paper are enlisted in the List of
Symbols.

2. MODELLING OF TARGET KINEMATICS
In this section the equations of motion of re-entry ballistic target cast as a state space model and the
corresponding measurement model employed for its kinematic state estimation are discussed.

2.1. Equations of Motion
The main forces acting on a ballistic target during endo-atmospheric phase are aerodynamic forces
(drag and lift), gravity and, depending on the coordinate system (i.e., when considered in Earth fixed

γ ρ
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frame), Coriolis and centrifugal forces [1,11,16]. The target motion is modelled based on the following
assumptions and the model parameters.

• The flight duration of a ballistic target in re-entry phase is short. Hence, the effect of Earth’s
rotation in the form of Coriolis acceleration is negligible.

• For a flat-Earth assumption, the centrifugal force is negligible.
• The angle of attack for the ballistic re-entry is small. Hence, lift force is neglected. Possible

spinning motion at re-entry is also neglected.
• The reference frame for equation of motion is an Earth-fixed VEN (Vertical-East-North) frame.
• Acceleration due to gravity is modelled as

• The air density for the isothermal layer and the gradient layer of atmosphere is represented by the
empirical model given below [5]:

(1)

Thus, drag and gravity are the main forces acting on the target in the re-entry phase. The acceleration
due to drag is proportional to the dynamic pressure and acts in the direction opposite to the total
velocity of the target relative to the atmosphere. Thus, considering the drag and gravity forces, the
kinematic equation of motion can be represented as given in (2):

(2)

2.2. State Models
Several state models have been reported in the literature. These, as well as the proposed direct
acceleration and direct jerk models with bootstrapped estimate of g are discussed below.

2.2.1. Existing Models ([1,3,5,8,9,11,13,17,18,20,22,23])
These models incorporate the dynamics of b or its function along with the position and velocity to form
the state vector of the target. The state equation for these models can be represented in the generic form
as given in (3). Here, the state variable p and its dynamics represented by hp(p) depend on the selection
of the model parameter (i.e., ballistic coefficient or its function) and its model structure. The particular
choice for these are given below.

(3)
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Constant Ballistic Coefficient (CBC) ([18,20,21,22,23]). In this case, pCBC = b and the ballistic
coefficient is modelled as constant with additive white Gaussian noise as given in (4).

(4)

Constant Inverse Ballistic Coefficient (CIBC) ([1,9,13,23]). In this case, pCIBC = ad and the drag
parameter ad is modelled as constant with additive white Gaussian noise as given in (5).

(5)

Composite model of Air Density and Ballistic Coefficient (ADBC) ([5,11]). In both the previous
models given in equations (4) and (5), the air density has been modelled explicitly by using the
empirical relation (1). In the case of ADBC, the dynamics of air density and ballistic coefficient are
modelled together by defining a new parameter γ = ρ/b, which is augmented with the kinematic state
elements for estimation. In this case, an exponential model for air density and a linear variation of b
with altitude have been assumed as given below in (6) and (7).

(6)

b = p0 + p1x (7)

Combining equations (6) and (7), the following dynamic equation is obtained.

(8)

Here, p0 and p1 are the design parame-ters whose values are assumed heuristically
depending on the type of the target. The selection of air-density parameters p0 and k are also based on
empirical models.

2.2.2. Proposed Models
Two models for RBTs are proposed here, which compute the target kinematics directly. These models
do not include the parameters b or g as state elements as in the cases of CBC, CIBC and ADBC. No
empirical model for these variables and air density is assumed in these cases. The proposed Direct
Acceleration (DA) and Direct Jerk (DJ) models are described below.

Direct Acceleration Model (DA). In this case, target position, velocity and acceleration components
are directly estimated [10] using the nonlinear state model in (9). It can be noted that, this model does
not assume that the acceleration is a constant plus a random noise, as in [3]. However, the time
derivative of acceleration is modelled in terms of the kinematic state and that of g, .

(9)

Here,
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(11)

(12)

(13)

(14)

Here, the composite variable γc = ρ/b is computed in bootstrapped mode from the estimated
kinematics at every time step for use in the next update cycle as given in Section 3.

Direct Jerk Model (DJ). In this model, the jerk components are also estimated in addition to position,
velocity and acceleration [6,10] using the state model given in equation (15). Here also the composite
variable g and its first and second derivatives are updated using the estimated kinematics at each time
step as described in Section 3. In contrary to constant jerk assumption, the jerk is modelled here in
terms of the kinematic state and the parameters g , and g

..
as seen in (16)–(18).
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2.3. Measurement Models
For the present study, radar measurements of position and velocity in cartesian frame are considered.
Followings are the assumptions for the measurement process.

• The measurements in cartesian frame are obtained by deterministic conversion from spherical
measurements.

• Non-zero mean and correlated measurement noise resulting from this nonlinear conversion of
measurements is neglected in the present study for simplicity.

• Measurement noise is additive, zero-mean, white and independent in the different measurement
components.

The measurement equation in cartesian frame is given by (21).

(21)

For the different state models considered, the measurement matrix H takes the form as given
below:

(22)

(23)

(24)

3. BOOTSTRAPPED COMPUTATION OF ffC
The DA and DJ models as given in Equations (9) and (15), use γ and its derivative(s) for their model
parameterization. Instead of using an empirical model with pre-decided parameters as in CBC, CIBC
and ADBC models, these variables are computed using the estimated kinematic state. Since, the

acceleration due to drag is given by , g can be computed as

(25)

The first and second time derivatives of gc as used in the direct acceleration model and the direct jerk
model are given as

(26)
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Here,

(28)

(29)

Thus, using the estimated kinematics, gc, c and c can be computed at each time step for use in the
next update cycle in the direct acceleration and the direct jerk models.

3.1. Computation of gc, c and c for DA Model

Since, jerk used in (28) for computation of c, is not a state variable in the DA model, an iterative

computation of it from (9) at each time step is needed and is given below.

• Step 1: Neglecting the jerk terms in (28), c is calculated using the equation (30) below and (14)

based on the estimated position, velocity and accelerations.

(30)

• Step 2: c is computed using (25).

• Step 3: gc, and c thus computed are used in equations (10)-(12) to compute jerk components
from (9).

• Step 4: Computed jerk components are now used in (28) for updating c using (26) for the same
time step.

3.2. Computation of gc, c and c for DJ Model

As in the previous case, the rate of jerk and c are computed as stated below.

• Step 1: Neglecting the rate of jerks in (29), c is calculated using the equation (31) below and

(20) based on estimated position, velocity, acceleration and jerk.

(31)

• Step 2: gc, and c are computed using (25) and (26) respectively.

• Step 3: gc, c and c thus computed are used in equations (16)–(18) to compute rate of jerk
components from (15).

• Step 4: Computed rates of jerk are used in (29) for updating c using (27) for the same time
step.
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4. SIMULATION RESULTS
This section presents the details of the numerical implementation, the criteria chosen for comparative
performance assessment, the cases for which the results are presented and finally the numerical results
themselves, alongwith a discussion on the results.

4.1. Performance Comparison Criteria

• The performance of the two proposed models and the three existing ones are demonstrated by
employing five separate Extended Kalman filters (EKF) for a typical re-entry target simulated
with the realistic aerodynamic characteristic for a typical class of target. However, this
knowledge is not used for design of the estimators.

• Performance has been compared in terms of the mean of estimation error in position, velocity and
acceleration and the estimates of acceleration components averaged over 50 Monte Carlo (MC) runs.

• For comparison, the acceleration components for the three existing models are computed from
their own estimates of position, velocity and b, ad or g as in (32), as in these cases the
acceleration components are not available as state elements. However, for the proposed models,
the acceleration components are directly used from the estimators.

(32)

Here, p̂(k|k) for different existing models are computed as given in Table 1.
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Table 1. Computation of p̂ (k|k)
for the existing models

Model ρ̂(k|k)

CBC
CIBC r (x̂(k|k)) âd (k|k)
ADBC ĝ  (k|k)

ρ
β
(

( | )
ˆ ( | ))x k k

k k

4.2. Simulation Conditions
The initial conditions for the target kinematics, measurement noise characteristics, selection of model
parameters, initialization of EKF are enunciated below.

• The true target trajectory is simulated with the known mass, reference area and variation of
drag coefficient with Mach and angle of attack of a typical target. However, this information is
not used in implementation of EKF. The initial trajectory conditions are (34, 9, 13)km in position,
(−1, 0.1, −0.2)km/s in velocity and (−5, 0.05, −0.02)m/s2 in acceleration in VEN coordinate
system.

• The values of the air density model parameters used in generating the target trajectory are given
in Table 2. The same parameters are used in implementation of EKF employing CBC and CIBC
models. However, DA and DJ models do not use any such empirical model for air density.

Table 2. Parameters for Air Density Model

Altitude Temperature Lapse Rate Layer
x0 T1 LR

(km) (Kelvin) (Kelvin/meter)
0 288.16 −6.5 × 10−3 Gradient
11 216.66 0 Isothermal
25 216.66 3.0 × 10−3 Gradient
47 282.66 0 Isothermal



• Measurement data is generated from true position and velocity with additive zero-mean, white
noise with the standard deviations (10,10,10)m in position and (0.1,0.1,0.1)m/s in velocity.

• The model parameters in ADBC are assumed as p0 = 1.395 × 105 kg/m2, p1 = −1.248 kg/m3 for the
trajectory considered. Further, k = 1.491 × 10−4 m−1 and r0 = 1.752 kg/m3 for altitude ≥ 9.1 km.

• The estimators are initialized with the first sample of measurements for CBC, CIBC and ADBC.
In these cases, b is initialised as 35000 kg/m2.

• For DA and DJ models, first two samples of measurements are used for initialization of the
position, velocity and acceleration state. The jerk elements are initialized as zero in the DJ model.

• The model noise variance for each of the models has been tuned to attain best performance for
the corresponding model.

• Fifty Monte Carlo runs for each of the models have been executed by varying the measurement
noise sequence.

4.3. Simulation Results and Discussions
The performances of EKFs using the different kinematic models averaged over 50 MC runs are shown
in Fig. 1-9 in terms of estimation errors in position and velocity along x, y and z directions as well as
acceleration estimates.

It is clear that EKF for all the models yields zero-mean estimation error in position and velocity.
Further, the mean and variance of the estimation errors in position and velocity for all the models are
comparable. This is because of the use of position and velocity measurements for state update. The
significance of the proposed DA and DJ algorithms are apparent in the case of acceleration estimates.
It is clear from Figs. 7-9 that the DA and DJ models produce acceleration estimates with zero mean
error, whereas the estimates from CBC, CIBC and ADBC models are biased. This is because the
assumption of contsant b in CBC and CIBC models and the selection of models parameters p0, p1 in
ADBC do not conform to the actual variation of b in the true target trajectory. However, the proposed
DA and DJ models use g and its derivatives computed from the estimated position and velocity, without
presuming any empirical model structure and thus are capable of capturing the variation in these model
parameters adequately. As a consequence, the acceleration estimates closely follow the true target
acceleration with zero mean estimation error. However, the variance of acceleration estimates are
higher in case of DA and DJ as opposed to the existing models. This is due to bootstrapped estimation
of model parameters.

It is to be noted that, significant bias present in acceleration estimates from CBC, CIBC and ADBC
models are more detrimental for guidance application, than presence of zero mean estimation error with
higher variance. Large bias in the estimates of velocity and acceleration may result in high demand of
lateral acceleration, which may lead to saturation of the actuators. However, the actuator bandwidth
limits the high frequency noise in the acceleration estimates resulted from the higher variance. Thus,
the acceleration estimates employing the proposed DA and DJ models are promising for use in
guidance application because of its unbiased estimates, inspite of yielding higher variance in
acceleration estimates.

5. CONCLUSION
In this paper, two novel algorithms have been proposed which estimates the acceleration and the jerk
of the reentry ballistic targets employing bootstrapped computation of model parameters g, and . It
has been demonstrated that the proposed direct acceleration model and direct jerk model produce
unbiased estimates of acceleration in contrary to the biased estimates from the existing models. The
proposed models can adequately represent the variation in r and b through the bootstrapped
computation of using the estimated kinematics. Although the incorporation of acceleration and

jerk as the state elements in the proposed models increases the computational requirement, however,
the advantage obtained through accurate and unbiased estimates of acceleration makes these algorithms
promising for employing in closed loop interceptor guidance.
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LIST OF SYMBOLS
Cd Drag coefficient
Cl Lift coefficient
As Reference cross-sectional area
m Mass
ad Drag parameter 

b Ballistic coefficient 
Time derivative of b
Air density at altitude x

LR Lapse rate
gc Gas constant (J/kg-K)
T1 Temperature (K) at bottom of each layer
x0 Lower bound for altitude of each layer
ρ0 Air density corresponding to altitude

x0 for each layer
g(x) Acceleration due to gravity
g0 Acceleration due to gravity on the surface of the Earth
Re Radius of Earth
x, y, z Target position components

Target velocity components

Target acceleration components

Target jerk components

Rate of jerk components
V Total taregt velocity
D Acceleration due to drag

, Zero-mean and white process noise
components of accelerations

, Zero-mean and white process noise
components of jerks

, Zero-mean and white process noise
components of rate of jerks

Zero-mean and white process noise for

Zero-mean and white process noise for α.d
Zero-mean and white process noise for 

hx, hy, hz Measurement noise in position components
Measurement noise in velocity components

X(k) State vector at k-th instant
X(k|k) Estimated state vector at k-th instant
P(k|k) State estimation error covariance
In×n n × n Identity matrix
On×m n × m Zero matrix
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Figure 1. Position estimation error in X

Figure 2. Position estimation error in Y

15 15.2 15.4 15.6 15.8 16 16.2 16.4 16.6 16.8 17

0

1

2

3

4

5

Time (s)

 E
st

im
at

io
n 

E
rr

or
 in

 y
 (

ea
st

) 
(m

)

CBC
CIBC
ADBC
DA
DJ

−1

−2

−3

−4

−5



Shrabani Ghosh, Siddhartha Mukhopadhyay 117

Volume 2 · Number 1&2 · 2010

Figure 3. Position estimation error in Z
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Figure 4. Velocity estimation error in X
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Figure 5. Velocity estimation error in Y
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Figure 6. Velocity estimation error in Z
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Figure 7. Acceleration estimates in X
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Figure 8. Acceleration estimates in Y
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Figure 9. Acceleration estimates in Z
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