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Abstract
In this paper, three techniques for determination of the sonic/catch-up points in unsteady
shock reflections based on numerical flowfield analysis are considered: the Mach-
number-based technique, the characteristic-based technique, and the perturbation
technique. These techniques are compared using the problem of shock reflection from a
convex cylinder simulated with an inviscid, non-heat-conducting flow model and an
ideal reflecting surface. It is shown that the sonic points obtained with the Mach-number
or characteristic-based techniques, coincide with the catch-up point obtained by the
perturbation technique. The obtained sonic point converges to the theoretical sonic point
given by the steady two-shock theory as the grid is refined. Quantitative data are
presented, which show that very fine meshes are needed to approach the theoretical value
with good accuracy. Furthermore, potential sources of significant experimental errors
when applying the perturbation technique in shock-tube experiments are identified.

1. INTRODUCTION
The sonic point is prominent in the theory of regular-to-Mach reflection transition as one of its possible
criteria [1]. When a moving planar shock wave strikes a convex surface (or a curved shock encounters
a straight surface or the plane of symmetry) it reflects from it. If the initial type of reflection is the
regular one, as the incident shock wave propagates further, at one particular shock position
corresponding to the sonic point the flow on the surface just behind the reflected shock becomes sonic
with respect to the reflection point. Then, downstream perturbations can reach the reflection point and,
supposedly, may initiate the regular-to-Mach reflection transition.

It is not easy to determine the location of the sonic point experimentally. A direct method would
require continuous monitoring of flow parameters (velocity, temperature) just behind the reflected shock.
Another, more feasible, way is based on tracking of very weak (not altering essentially the flow under
study) waves generated by sources on the boundary of the flow domain. In case of shock wave
reflection/diffraction, the shock wave itself may produce weak perturbation signals when passing over
small geometrical features on the wall (e.g., minute bumps or grooves). These perturbations propagate
outward in all directions with the signal speed, which is the local sound speed plus the local flow
velocity. This approach represents another way to find the sonic point because the downstream
perturbations can be communicated to the reflection point only if the sonic point has been reached. The
sonic point found using weak perturbation tracking may be also called the catch-up point because its
location is determined from the ability of downstream disturbances to catch-up with the reflection point.

Lock and Dewey [2] were among the earliest researchers who applied an experimental diagnostics
technique using weak waves in order to evaluate the sonic criterion for rigid inclined surfaces. Skews
and Kleine [3] expanded the diagnostics technique based on the tracking of weak perturbations in
combination with high speed time-resolved imaging, to a wide variety of shock wave flows. In a recent
experimental study [4], they used this diagnostics to detect the catch-up point on convex cylinders.
They generated weak perturbations on the surface of circular cylinders with minute grooves and tracked
them using high speed time-resolved optical imaging. In this way, they were able to identify the
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moment and the point on the cylinder surface when and where the disturbances for the first time catch
up with the reflection point. They found that on a convex circular arc the catch-up point is reached at
a higher wall angle than in the case of a wedge (in which case it is close to the steady-state two-shock-
theory value for the sonic point). Thus, the relationship between this experimentally-observed catch-
up point and the sonic point is not immediately obvious. In general, it is useful to distinguish the sonic
point and the catch-up point unless it is proven that they are the same points indeed.

In numerical simulations, the range of options for sonic point determination is wider because all
flow parameters are available at any moment and location. The main goal of the present paper is to
consider and compare various techniques to determine the sonic points from numerical flowfields,
namely, the Mach-number-based technique, the characteristic-based technique, and the perturbation
technique. The first, Mach-number-based, technique implies direct application of the sonic point
definition when analyzing Mach number distribution on the cylinder surface [5]. The second,
characteristic-based, technique assumes that the sonic point is reached when the characteristic speed u
+ c just behind the reflection point is equal or greater than the speed of the reflection point motion along
the reflecting surface. Finally, the third technique may be considered as a numerical implementation of
the perturbation technique by Skews & Kleine [4] but with infinitesimally weak perturbations.

Theoretically, when considering shocks as discontinuities in inviscid flowfields, all these three ways
are gas-dynamically equivalent. However, the flowfields produced by numerical simulations differ
from the idealized picture: shocks and other discontinuities are smeared due to numerical viscosity; the
reflection point actually becomes a “reflection zone” where two smeared fronts intersect (see Fig. 1b).
Even when using quasi-monotone shock-capturing schemes, low amplitude oscillations (“numerical
noise”) is present in the solutions. Therefore, it is of importance to apply the above techniques to actual
numerical flowfields and evaluate their results. The results for inviscid numerical simulations of a test
problem with different grid resolutions are presented in this paper and compared with the two-shock
theory predictions.

Shock reflection from a convex cylinder is chosen here as a test problem for comparison of the
above-mentioned techniques. The schematic illustration of the problem is presented in Fig. 1a with the aim
to introduce the angle-related terminology used in this paper. In this figure, the cylinder angle indicates
the position of the incident shock wave along the surface of the cylinder in terms of polar angle counted
from the horizontal direction clockwise; the incident angle is the angle between the incident shock
wave and the tangential line to the surface of the cylinder (it is equal to the cylinder angle); the initial
angle of incidence is the incident angle when the incident shock wave strikes the surface of the cylinder
for the first time; and the wall angle (also called the wedge angle) is the angle between the tangential
line to the surface of the cylinder and the horizontal line.

The two-dimensional computations are performed using a locally adaptive unstructured unsteady
Euler code [6, 7], which is based on a second order in space and time, MUSCL-type, TVD finite-
volume solver. The computational domain is discretized with an unstructured mesh composed of
triangular grid elements, which is adapted to the solution in the course of computation using a sensor
based on the normalized second derivative of density. The grid refinement is based on the classical
transient reversible h-refinement procedure.
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Figure 1. (a) Schematics of regular shock reflection from a convex cylinder with the illustration
of the local Galilean transformation into the frame of reference attached to the reflection
point: i and r represent the incident and reflected shock waves; (b) Schematics of typical
numerical representation of the regular shock reflection pattern.

(a) (b)



Figure 2. (a) Illustration of the developed sonic line and subsonic region when the incident shock
has passed the sonic point; (b) Typical trajectories of points A and B (see Fig. 2a) versus the
position of the incident shock (angles on the axes are given in terms of cylinder angle).

The remainder of the paper is organized as follows. Details of the three techniques for determination
of the sonic/catch-up point are described in Section 2. In the next Section 3 the results of their
application to numerical flowfields with different grid resolution are provided and discussed. Further
discussion is given in the concluding Section 4.

2. SONIC/CATCH-UP POINT DETERMINATION TECHNIQUES
2.1. The Mach-number-based technique
The Mach-number-based technique implies direct application of the sonic point definition through
analysis of the instant Mach number distribution on the cylinder surface. According to the definition of
the sonic point, it is the point at which the flow behind the reflected shock becomes sonic with respect
to the reflection point. The reflection point moves along the cylinder surface with the velocity 
D = Vs/ sin θ, where Vs is the incident shock velocity (Vs = Msc0 with Ms being the incident shock Mach
number and c0 – the speed of sound in front of the incident shock) and θ is the cylinder angle
corresponding to the current location of the incident shock. If uτ denotes the tangential flow velocity
on the cylinder surface, then D – uτ would be the tangential flow velocity relatively to the reflection
point. The division by the speed of sound c at the same location results in the local relative flow Mach
number M. Therefore, in order to find the sonic point the flow Mach number distribution on the cylinder
surface (in the frame of reference attached to the reflection point) should be analyzed. That is why this
method is called the Mach-number-based technique.

At earlier moments, when the sonic point is not reached yet, the flow along the surface in the frame
of reference attached to the reflection point is entirely supersonic (M > 1 everywhere). When the sonic
point is just reached, a grid node (or nodes) with

(1)

appears at a certain time step, i.e., a small subsonic zone is formed. However, due to the presence of
numerical noise in the solution, this subsonic zone may disappear temporarily at the next time step(s) and/or
a few other small isolated subsonic zones may appear. It is not clear which moment or spatial location
should be designated as the sonic point. In order to overcome this difficulty and to introduce a consistent
way of the sonic point determination on different grids, the sonic line evolution can be considered.

Figure 2a shows the incident and reflected shock waves, the sonic line and the subsonic region
developed behind the reflected shock wave when the shock has already passed the sonic point. Points
A and B are the intersections of the sonic line with the cylinder surface. Their locations at each moment
can be determined from the Mach number distribution on the cylinder surface in the frame of reference
attached to the reflection point. Then the trajectories of points A and B can be plotted together, as shown
in Fig. 2b, and traced back in time. Their intersection would give the location of the sonic point, where
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the flow right behind the reflection point would become sonic with respect to the reflection point and
the subsonic zone would grow afterwards.

2.2. The characteristic-based technique
The characteristic-based technique also analyzes flow parameters on the cylinder surface only. Small
perturbations propagate along the surface with the velocity uτ + c. The reflection point moves along the
cylinder surface with the velocity D defined above. At the sonic point, downstream disturbances are
capable, for the first time, of reaching the reflection point. This is possible only if 

uτ + c ≥ D, (2) 

which becomes the criterion for finding the sonic point. In other words, on an x – t diagram drawn for
the cylinder surface the inverse slope of C + characteristic should become greater than the inverse slope
corresponding to the trajectory of the incident shock along the surface. That is why this technique is
called the characteristic-based technique. The sonic point location would correspond to the moment
(shock location) when the condition (2) is for the first time satisfied downstream of the reflection point.
It should be noted that this condition is, in fact, gasdynamically equivalent to the condition (1) of the
Mach-number based technique.

Figure 3a illustrates this technique. Three points “a”, “r”, and “b” along the cylinder surface are
shown. Point “a” is downstream of the incident shock; point “b” is upstream of it (in the frame of
reference attached to the reflection point); and point “r” is the reflection point. In this method, the signal
velocities along the cylinder surface downstream of the reflection point (e.g., at point “a”) are
compared to the reflection point (“r”) velocity.

In order to find the sonic point using the characteristic-based technique, at each numerical time step
relation (2) is checked for all grid nodes on the cylinder surface. Through plotting the position of points
that satisfy relation (2) versus the shock position valuable information regarding the sonic point and the
subsonic zone can be obtained. Such approach is illustrated in Fig. 3b. The sonic point position is
indicated, which represents the first point where relation uτ + c ≥ D is satisfied. Moreover, the set of
points as a whole represents the subsonic zone developed behind the reflection point. The density of
the points in Fig. 3b differs from side to side of the subsonic zone, and that is because of adaptive nature
of the mesh used in this study. The side closer to the incident shock wave is more dense while the other
side is less dense.

The characteristic-based technique may be also interpreted as a “surface-only” version of the
perturbation technique which is explained in the next subsection.
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Figure 3. (a) Schematics of the characteristic-based technique; (b) Typical plot resulting from
application of the characteristic-based technique (angles on the axes are given in terms of
cylinder angle).
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2.3. The perturbation technique
The idea of the perturbation technique is to observe the propagation of weak disturbances originating
on the reflecting surface behind the reflection point and to analyze which of them, and when, are
capable of reaching the reflection point. In order to simulate this technique numerically, it is required
to generate perturbation signals. One way is to perform the direct numerical modeling of the
perturbation technique by Skews and Kleine [4], i.e., to use small perturbation sources, such as small
bumps/grooves, on the boundary of the flow domain, similarly to the experimental perturbation
sources. Technically, using locally refined unstructured grids, this approach is possible, even though the
size of geometrical perturbation sources may be very small (as compared to the radius of cylinder
and the general size of the computational domain). However, it would be very challenging and
expensive computationally because in order to capture the evolution of the generated very weak waves
a very fine mesh and/or higher-order numerical schemes are required.

There is a more efficient approach that implements tracking of imaginary (and therefore,
infinitesimally weak) perturbations as a postprocessing procedure performed after each time step of
CFD simulation. As soon as the incident shock reaches an imaginary perturbation source the
perturbation wave front originating from the source is initiated as a set of points (not related to grid
nodes). In order to track these weak perturbation wavefronts the Huygens–Fresnel principle [8] can be
applied. After each time step, each point of the wave front is shifted in space according to the local
speed of sound and local flow velocity. More details about the numerical perturbation tracking method
may be found in [9].

Figure 4a (similar to Fig. 4 of [4]) shows a typical frame of a movie generated from the CFD
simulation of the unsteady shock reflection from a convex cylinder with three perturbation sources
along the cylinder surface, for an inviscid case. Three perturbation sources labeled as 1, 2 and 3, the
forward facing perturbation waves denoted as “P” waves, and the backward facing perturbation waves
denoted as “Q” waves are shown in this figure. Figure 4b presents the positions of various waves on
the cylinder surface as a function of the incident shock position for the same simulation. In other words,
Fig. 4b is an x – t diagram of the unsteady flow, with the shock position serving as a time variable. The
dash-dotted lines indicate the reflection zone trajectory while dashed lines P and Q correspond to the
forward and backward facing perturbation waves, respectively. In general, by tracking perturbation
signals using the movie frames and/or the wave diagram it is possible to identify the moment and the
point on the cylinder surface when and where disturbances for the first time catch up with the reflection
point, and that represents the essence of the perturbation technique.

Figure 4 allows making an interesting observation. All three backward facing perturbation waves
(Q1, Q2, and Q3) can be seen in Fig. 4a and 4b. However, only the first and the second forward
facing perturbation waves (P1 and P2) can be seen in Fig. 4a. The lines representing them on the x
– t diagram (Fig. 4b) clearly diverge from the reflection zone trajectory, which demonstrates that the
flow is supersonic relatively to the reflection point behind the reflected shock wave at these two
perturbation sources. These perturbations catch up with the reflection zone only much later, after the
incident shock has passed the sonic/catch-up point. Furthermore, it appears that the forward facing
perturbation wave arising from source “3” (P3) has catched up and merged with the reflection
pattern, and cannot be seen in Fig. 4a. Therefore, it may be concluded that, judging from this frame,
the catch-up point is reached before this moment. However, careful inspection of Fig. 4b reveals that
P3 wave does emerge from the reflection zone, remaining very close to it so that on a movie frame,
like that in Fig. 4a, it is indistinguishable from the reflection zone. For inviscid simulations, the
reflection zone thickness is determined only by numerical viscosity and, therefore, it is “always” 
(in fact, within available computer resources) possible to improve accuracy via grid refinement and
to resolve and clearly distinguish all the waves, no matter how close they are. However, this
observation may have very important implications for interpretation of experimental optical images
(with unavoidable finite thickness of all wave fronts due to optical effects). It may happen that the
finite thickness of shock wave and disturbance fronts would prevent correct determination of the
catch-up point location.

The next section compares numerical results for the location of sonic and catch-up points obtained
with the techniques described above.
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3. COMPARISON OF THE SONIC AND CATCH-UP POINTS OBTAINED BY
DIFFERENT TECHNIQUES
In the present section, the comparison of different techniques for the determination of sonic and catch-up
points is carried out for the problem of shock wave reflection from a convex cylinder. The numerical
simulations are based on an inviscid, non-heat-conducting flow model with an ideal reflecting surface (the
impermeable wall boundary condition). The incident shock Mach number Ms is 1.211, which is one of the
Mach numbers used by Skews and Kleine [4] in their experiments. The specific heat ratio γ is equal to
1.4. The initial angle of incidence is 5°, i.e., the cylinder arc begins from the polar angle equal to 5°.

In the subsequent sections all numbers related to linear dimensions are given in terms of the cylinder
radius R, which is used as a scale of distance. In particular, the background mesh size ∆l is 0.004, which
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Figure 4. (a) A typical frame from the CFD movie demonstrating the evolution of the incident
and reflected shocks as well as three disturbance fronts (their initiation points on the cylinder
surface are indicated as red circles); (b) The respective typical wave diagram of shock
propagation along the cylinder surface with three forward (P) and backward (Q) facing
perturbation waves.
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approximately corresponds to 250 nodes along the distance equal to the cylinder radius (the mesh size
is slightly non-uniform due to unstructured nature of the grid). The grid is refined near solution
peculiarities so that each level of refinement reduces the mesh size twice. Therefore, the finest mesh
size (near discontinuities) for n levels of grid refinement may be evaluated as ∆l/2n.

3.1. The theoretical sonic point
It would also be interesting to compare numerical results with a theoretical prediction of the sonic point.
In general, in order to obtain the theoretical sonic point for unsteady problems, the Euler equations for
the inviscid case or the Navier-Stokes equations for viscous flow should be solved analytically. As
stated by Ben-Dor and Takayama [10], “due to the complexity of the governing equations of unsteady
shock reflections, simple transition criteria, such as those presented . . . for steady and pseudo-steady
flows, can not be established”. They [11] suggested to divide the unsteady flow into a sequence of
momentarily pseudo-steady states and analyze each such state individually using the steady-state shock
analysis. Under this assumption, at each moment (or each cylinder angle) inviscid unsteady shock
reflection from a convex cylinder can be considered as a pseudosteady shock reflection from the
corresponding wedge. Then, by applying the Galilean transformation as shown in Fig. 1a, the
corresponding steady problem can be obtained. Then, the oblique shock relations can be applied to
solve this two-shock configuration and to find at which angle θ the flow behind the reflected shock
becomes sonic, i.e., to find the sonic point. The respective formulas may be found in [1]. Therefore,
using this approach the sonic point can be predicted using the classical two-shock theory but it is not
immediately obvious that the steady-state two-shock theory predictions are valid for the unsteady cases
under consideration. The theoretical treatment provides sonic angles as a function of the incident shock
Mach number. For the incident shock Mach number equal to 1.211 the sonic angle would be 45.70°

(in terms of cylinder angle).

3.2. The Mach-number-based technique (sonic point)
The Mach-number-based technique is described in Sec. 2.1. Table 1 presents the sonic angles obtained
with this technique for different levels of grid refinement and the finest mesh size used in each
simulation. The obtained results show that with increasing the level of refinement, i.e., by refining the
grid, the sonic angle converges to the theoretical sonic angle obtained by the two-shock theory.

Figure 5 shows the trajectories of points A and B (see Fig. 2a), as well as the trajectory of the
reflection zone on the cylinder surface (see Fig. 1b) for the case with 4 grid reninement levels. It is seen
that the sonic point and the subsonic region arise behind the reflection zone, and as they develop, the
point A moves into the reflection zone interior. It should be noted that for inviscid simulations the
thickness of shock fronts and, therefore, of the reflection zone is not physical in the sense that it would
decrease indefinitely with refining the mesh. However, the pattern of trajectories shown in Fig. 5 would
remain qualitatively the same for all meshes.

3.3. The characteristic-based technique (sonic point)
The characteristic-based technique is described in Sec. 2.2. It turns out that, within the accuracy of two
digits after the point, this technique produces exactly the same results as shown in Table 1 for the Mach-
number based technique.
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Table 1. Sonic angles obtained by the Mach-number-based technique with
different levels of grid refinement for incident shock Mach number of 1.211

Finest Sonic
Level of mesh size angle
refinement (non-dimen.) (degree)
0 4.00 × 10–3 50.08
2 1.00 × 10–3 47.70
4 2.50 × 10–4 46.66
6 6.25 × 10–5 46.32
8 1.65 × 10–5 46.13
Two-shock theory 45.70



Figure 6 presents the result obtained with the characteristic-based technique for two levels of grid
refinement. The symbols represent the points that satisfy relation (2). The first point that satisfies
relation (2) (which is the sonic point) is indicated in the figure. Therefore, the points shown in Fig. 6
represent the zone in which perturbations can propagate faster than or at the same speed as the incident
shock moves along the cylinder surface. Similarly to the results obtained with the Mach-number-based
technique, Fig. 6 shows that the sonic flow first arises behind the reflection zone and further
development of the subsonic zone is very close to that seen in Fig. 5.
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Figure 5. Trajectories of points A and B versus incident shock position for four levels of grid
refinement (the Mach-number-based technique).
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3.4. The perturbation technique (catch-up point)
The perturbation technique is described in Sec. 2.3. As the catch-up point can be determined either
visually from the frames of a CFD movie or by considering the wave diagram, the results are divided
into two respective subsections. In all cases two sets of perturbation sources are considered to
investigate the effect of their distribution on perturbation technique results. In one case, all perturbation
sources are at the odd cylinder angles, such as 41°, 43°, etc., while in the other case the perturbation
sources are at the even cylinder angles, such as 40°, 42°, etc. There is a 2 degrees distance between two
consecutive perturbation sources in both cases.

3.4.1. Applying wave diagram
In the present section, the catch-up point is obtained with the wave diagram. An example of such a
diagram is presented in Fig. 4b. By tracking “P” waves it is possible to determine the catch-up point. As
it is shown in Fig. 4b, “P” waves diverge from the shock trajectory at the beginning, but as they enter
the subsonic zone, they come back to the shock wave front. It should be noted that as the location of a
disturbance source approaches the catch-up point, the respective P-wave trajectories become very close
to the shock trajectory, so that it becomes difficult to distinguish them (Fig. 4b). If a disturbance source
would be located exactly at the catch-up point or at higher cylinder angles, its P-wave trajectory would
be indistinguishable from the shock trajectory. In other words, at or after the catch-up point, P-waves
catch-up with the shock wave immediately, by the definition of the catch-up point. As demonstrated in
Fig. 4b, just prior to the catch-up point, P-wave trajectories run very close to the shock trajectory over a
relatively long distance (a few degrees). That results in difficulties in the determination of the catch-up
point location. It is suggested to identify as the catch-up point the point where the maximum deviation
of the last (closest to the incident shock) resolved P-wave trajectory from the shock wave trajectory
is observed, as schematically illustrated in Fig. 7. Indeed, at the moment when the maximum deviation
of the P-wave trajectory and the incident shock wave is achieved, the speed of P-wave just equals that
of the shock and right thereafter it exceeds the shock wave speed, i.e. the distance between the shock and
the P-wave begins decreasing. That is only possible if the sonic point has just been reached.

The catch-up points obtained with this technique are presented in Table 2, for odd and even
perturbation sources. As can be seen, the results are very close, which means that the perturbation source
positions are not overly important for this technique. It should be noted that here perturbation fronts are
assumed to have an infinitesimally small thickness, while on experimental schlieren images,
perturbation fronts have a finite thickness determined by the properties of the optical set-up. This finite
thickness may affect the accuracy of catch-up point determination from the wave diagram obtained via
extraction of wave positions from experimental movie frames.
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In order to compare these results with the previous methods, the results obtained with different
techniques are presented together in Table 3. As the obtained results for odd and even sources are
very close, their arithmetical averages are used in Table 3 as the perturbation technique results.
Table 3 reveals that the results obtained with these techniques are very close. Hence, it can be
concluded that the catch-up point and the sonic point are actually the same points in this inviscid
simulation.

3.4.2. Visual identification from the movie
In the present section, the catch-up point is obtained visually from the CFD movies via observations
where the perturbation signals merge with the reflection point. Therefore, the thickness of shock and
perturbation wave fronts may affect the obtained results. Figure 8 illustrates a typical frame of the
movie generated with 6 levels of grid refinement. As can be seen, “P1” and “P2” waves are visible,
while “P3” and “P4” have already merged with the reflection pattern, which means, judging from this
frame only, that the catch-up point is somewhere between source “2” and the current shock position. In
fact, signals “P3” and “P4” are not seen in all earlier frames as well, which leads to the conclusion that
the catch up point should be between sources “2” and “3”.

Table 4 presents the results for odd and even perturbation sources. The values given in the
parentheses correspond to the location of two perturbation sources. For the second source its
perturbation P-wave is not visible in the movie at all, i.e., this disturbance catches up with the
reflection point immediately (at its origin). The first source precedes the second one and its P-wave
is identifiable in the movie. Therefore, the catch-up point is somewhere between these two points,
e.g., it can be approximated to be at their arithmetical average. The results presented in Table 4
reveal that the catch-up point obtained visually from the simulation movie occurs at smaller
cylinder angles, and also that the perturbations source positions affect the visually determined
catch-up point.

50 On Numerical Techniques for Determination of the Sonic Point 
in Unsteady Inviscid Shock Reflections

International Journal of Aerospace Innovations

Table 2. Catch-up angles obtained with the perturbation technique (wave
diagram) for different levels of grid refinement and incident shock Mach
number of 1.211

Level of Finest mesh size Catch-up angle Catch-up angle
refinement (non-dimen.) (Odd sources) (Even sources)
0 4.00 × 10–3 49.82 49.82
2 1.00 × 10–3 47.66 47.66
4 2.50 × 10–4 46.66 46.80
6 6.25 × 10–5 46.50 46.44
8 1.65 × 10–5 46.39 46.23

Table 3. Catch-up and sonic angles obtained by the perturbation technique
(wave diagram), the characteristic-based technique and the Mach-number-
based technique for different levels of grid refinement and incident shock
Mach number of 1.211

Finest Catch-up angle Sonic angle Sonic angle
Levels of mesh size (Perturbation tech.) (Characteristic- (Mach-number-
refinement (non-dimen.) (Wave diagram) based tech.) based tech.)
0 4.00 × 10–3 49.82 50.08 50.08
2 1.00 × 10–3 47.66 47.70 47.70
4 2.50 × 10–4 46.73 46.66 46.66
6 6.25 × 10–5 46.47 46.32 46.32
8 1.65 × 10–5 46.31 46.13 46.13
Two-shock theory 45.70
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Table 4. Catch-up angles obtained by the perturbation technique via visual
inspection of the simulation movies

Levels of Finest mesh size Catch-up angle Catch-up angle
refinement (non-dimen.) (Odd sources) (Even sources)
0 4.00 × 10–3 44 (43–45) 43 (42–44)
2 1.00 × 10–3 44 (43–45) 45 (44–46)
4 2.50 × 10–4 44 (43–45) 45 (44–46)
6 6.25 × 10–5 44 (43–45) 45 (44–46)

Figure 8. Typical frame of the simulation movie for disturbance sources at even angles, with
six levels of grid refinement.

4. CONCLUDING REMARKS
Determination of the sonic/catch-up point in an unsteady flowfield is an important aspect in the studies
of shock reflection. In this regard three techniques for determination of the sonic/catch-up points in
unsteady shock reflections based on numerical flow-field analysis are introduced and compared in this
paper. The results of inviscid numerical simulations of the test problem with different grid resolutions
show that the sonic points obtained with the Mach-number or characteristic-based techniques, coincide
with the catch-up point obtained by the perturbation technique (even when using a finite number of
perturbation sources).

The obtained sonic point converges to the theoretical sonic point given by the steady two-shock
theory as the grid is refined. It is remarkable how fine the mesh should be to approach the theoretical
value within just 0.5° or 1% accuracy (good accuracy but not something extraordinary). One may have
false impression that it is easier to obtain accurate values for the sonic point location as compared to
the location of the RR-MR transition, which is known to be notoriously difficult to resolve (see [12])
because the trajectory of the triple point is tangential to the cylinder surface. However, the results of
the present paper show clearly that it is not the case.

It is worth noting that if the numerical modeling were conducted using the Navier-Stokes flow model,
only the perturbation technique can be used to obtain the location of the catch-up point from numerical
results. Under the no-slip boundary condition, the flow velocity on a solid wall is always zero, thus
making it impossible to apply the Mach-number-based and characteristic-based techniques, which
analyze the data on the solid surface only. In this case, the relative flow velocity on the solid surface
always remain supersonic relatively the reflection point and the sonic point does not occur on it.

The perturbation technique can be used as a powerful tool for determination of the sonic/catch-up
point in future studies when the Mach-number-based or characteristic-based techniques are not



applicable. The present work also reveals potential source of experimental errors when applying the
perturbation technique. It is shown that close to the sonic point the trajectories of the incident shock (or
the reflection zone) and the perturbation signals are nearly parallel and high numerical resolution is
needed to distinguish them. On experimental images the shock and perturbation fronts have a finite
optical thickness, which may be significant, especially for high speed movies which typically have
lower resolution than still images. This may lead to difficulties in determination whether or not a
particular disturbance has already merged with the reflection point. It may be conjectured that this type
of error may be the reason why the catch-up point obtained experimentally by Skews and Kleine is well
ahead (at higher wedge angles) than the theoretical sonic point. However, further numerical studies, in
particular using the Navier-Stokes equations, are needed to finally resolve the issue with confidence.
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