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Abstract:
The stepwise regression is a well-established technique used to determine aerodynamic
model structure from flight data. This paper discusses the application of stepwise
regression to a nonlinear estimation method proposed previously by the authors, for
model structure determination. The approach can also be used for updating aerodynamic
database models in table look-up form. The current results obtained for model structure
determination for a reference problem are compared against the results obtained using the
well known least squares multivariate linear estimation. Simulated data of a transport
aircraft is used to prove the concept. Finally, an application of the technique for the aero
database update of a high performance fighter aircraft is discussed.
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1. INTRODUCTION
Identification and determination of model structure/parameters from measured experimental data
necessitates use of statistical experimental design fundamentals, regression modeling techniques, and
optimization methods. All these three elements are usually combined into a single technique called
Response Surface Methodology (RSM). In this paper, we are concerned about the regression modeling
techniques for finding adequate nonlinear aerodynamic model structure with standard test for
significance like that of F-test in RSM. The Least squares estimation, also called regression analysis is
well known for its computational simplicity. The regression techniques can be applied to nonlinear
models as well since the underlying principle is based upon minimizing the sum of squares of the error
between the measurements and model response [1]. The model structure determination and its
statistical validation, play a vital role in aerodynamic database update process [2-3]. The important
factor in the estimation process is the information content present in the data with respect to the
postulated model. Statistical measures are useful in inferring the content of information and hence help
to arrive at an adequate model structure. Given a set of data there is always a trade-off between the
model structure complexity and accuracy of estimation. Statistical measures help in deciding whether
the postulated model structure is adequate for the desired accuracy or the data warrants a change in the
model structure.

A brief description of a technique for determining the airplane model structure from flight data using
modified stepwise regression [4-5] is given below: The general form of aerodynamic model equations
can be written as:

(1)

where y(t), represents the resultant coefficient of aerodynamic force or moment (the dependent
variable), parameterized by unknownsto θ0 to θg-1 and x

1
(t) to xg-1 are the airplane response and input

variables and their combinations (the independent variables). Assuming that a sequence of N
observations of x and of y has been made, then an adequate model for the aerodynamic coefficients can
be determined by applying the stepwise regression [4-5]. If the dependent variable y is linearly related
to independent variables, then such a model is called as a linear model, and is valid for smaller
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excursions around an operating point. Models representing the nonlinear response relationship are valid
over a wider range. There are two approaches discussed in the literature to handle such models. They
are:

1) Model being linear in parameter but nonlinear in the independent variables [4];
For e.g.,

(2)

2) Model being nonlinear in the parameter itself [6];
For e.g., 

(3)

In this paper, we address latter type of models and determine the adequate structure using stepwise
regression. The function f can be estimated by minimizing the cost function iteratively [1]. The problem
of determining the function f has been approached in literature using spline functions. A spline function
can be fitted to (3) and the coefficients of spline function can be estimated using least squares/
maximum likelihood estimation [2,4,5]. Instead of this approach, we propose to estimate the nonlinear
function f directly. The algorithmic steps of the proposed estimation technique can be found from [6].
The key to the direct estimation of the nonlinear function f, is to represent it in the form of table lookup
with linear interpolation. The paper shows that stepwise regression applied to the proposed method for
model structure determination requires less computational effort when compared to model structure
determination for models represented by (2). The concept is proven using the six-DOF simulated data
of a light transport aircraft. Subsequently, it is applied for updating the aerodynamic database of a high
performance fighter aircraft.

2. STEPWISE REGRESSION AND STATISTICAL MEASURES
In regression analysis, whenever a relationship between two quantities, yi and xi is sought, there is a
need for a measure of goodness-of-fit. The F-statistic, also known as the F-ratio is a measure of the
strength of the regression. A strong relationship between yi and xi gives a high F-ratio [1]. 

The procedure for stepwise regression as applied to models of form represented by (2) starts with an
assumption that there are no variables in the postulated regression equation other than the bias term θ0.
Subsequently an optimal subset of variables is found by inserting independent variables into the model
one at a time. The first independent variable entering into the regression equation is the one that has
largest correlation with the dependent variable. This variable should also produce the largest value of
the F-statistic for testing the significance of regression. The variable is entered if the partial F-statistic
exceeds a preselected critical F-value.

(4)

where θ^1 is the estimated parameter associated with x1 and s2 (θ^1) is the variance estimate of θ1.
The second variable chosen for the entry should be such that it has the largest correlation with y after

accounting for the effect of first variable in y. These correlations are denoted by the partial correlation
terms. In general, at each step, the independent variable having highest partial correlation with the
dependent variable finds an entry into the regressor provided the partial F-statistic exceeds the
prespecified value.  Since the optimal choice of variables in the regression is not known apriori, a
variable added at an earlier step may be redundant, because the relationship between it and the
remaining variables as present in the equation can reduce its F-statistic to less than Fcritical. If this
happens, this variable is deleted from the regressor. This procedure terminates after all significant terms
have been included in the model. The flow chart for the procedure to determine adequate model
structure is given in Figure 1.
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The steps in stepwise regression are summarized as follows [1]:

STEP 1: Compute the correlation coefficients between y (dependent variable) and each independent
variable xi, where i = 1,2,…,p.

(5)

where and and k represents discrete points in time.

Check whether the correlation coefficients are significant or not (i.e., greater than a prespecified
threshold). If not, none of the potential variables can enter the model, and the mean value yields the
best fit. Otherwise, select the independent variable, say the jth variable with the highest correlation
coefficient as the first entry and postulate the probable regression model as

(6)

Figure 1.  Flow chart depicting the steps in adequate model structure determination

Yes

Is the model fit satisfactory? 

STEP 2 
Compute the partial correlations for each of the remaining variables. Choose the variable with largest partial correlation 
with the dependent variable for the next entry after accountingfor the effect of earlier variables that are added.

STEP 1 
Compute the correlation coefficients between independent variables and the dependent variable. Choose 
the independent variable with highest correlation coefficient and enter that variable in the model. 
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STEP 2: Compute the partial correlations, ryxi*xj
, i ≠ j, for each of the remaining independent variables

(i = 1,2,…j-1,j+1,…,p.). The procedure to compute the partial correlations with one or more variables
held fixed, is as follows:
a) Fit a model dropping the jth independent variable

(7)

b) Next fit the same model to the jth independent variable which was dropped in (7)

(8)

c) Find out the fit errors from (7) and (8). Denote them as ey and ex.
d) Calculate the partial correlation using the fit errors as follows:

(9)

where e–y and e–x are the respective mean values.
Choose an independent variable with the largest partial correlation, say the kth independent variable.

Fit the new model with the new independent variable

STEP 3: Compute the partial F values Fj and Fk corresponding to the jth and kth variable. Find the
minimum F among these two and compare it with Fcritical.
F-statistic from partial correlation

(10)

If min(Fj,Fk)<Fcritical, it means that the contribution due to the corresponding variable is not significant;
accordingly delete the jth or the kth independent variable whichever is smaller and return back to STEP 2.

If min(Fj,Fk)>Fcritical, it means kth variable has a significant contribution to dependent variable and
hence can be retained in the model.

Return back to STEP 2 and examine the partial correlations of y on the remaining variables, retaining
j and k in the model.

The procedure automatically stops when the variable once entered in the model cannot be removed
and when addition of any new variables does not lead to further improvement in the model.

Some other useful criteria are the coefficient of determination (R2) and the adjusted coefficient of
determination are used for evaluating the model fit.

(11)
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The value of R2 lies between 0 and 1. The larger the value of R2, the better the fit is. However, it
tends to be overestimated when the number of samples N is not large when compared with p.

The adjusted coefficient of determination, AdjR2, is a modified version that corrects (11) for the
number of parameters being estimated and does not necessarily increase with extra variables.

(12)

3. ADEQUATE MODEL STRUCTURE
Under this section two different model structures are discussed: one is linear in parameter and the other
is nonlinear in parameter.

3.1 Models linear in parameters and nonlinear in independent variables
This approach is dealt in [4]. We demonstrate the same using the six-DOF simulated data of light
transport aircraft. Let us consider the modeling of pitching moment coefficient. The pitching moment
coefficient is the dependent variable here and it depends on independent variables like angle of attack,
pitch rate and elevator. The pitching moment coefficient exhibits nonlinearity with respect to angle of
attack. Fitting a suitable model structure to this kind of nonlinear relation is an art and a challenge, and
this is discussed in this paper. 

In general for an aero database update process, the aerodynamic coefficients are computed from
flight data using inverse six-DOF equations [7]. Subsequently, the adequate nonlinear model structure
is determined using the steps given in Section 2. Table 1 gives the complete analysis of stepwise
regression to arrive at adequate model structure. The Fcritical is assumed to be 50. This value is arrived
based on the modeling of flight data off-line on a trial and error basis. 

It is noted from Table 1 that α4 gets eliminated from the model structure at step 8. Figure 2 shows
the model fit obtained for the pitching moment coefficient for alternate steps compared with the true
value. 

Figure 2. Estimated model compared with the true model 
(Linear estimation)

Obviously the fit between model arrived at seventh step and the truth is satisfactory as the model is
adequate. Figure 3 is a plot showing the convergence of adequate model fit obtained after every step.
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It is seen that variance of seventh step is closer to zero, R2 and AdjR2 values are closer to 1 indicating
the model adequacy. It is noted in this case that the values R2 and AdjR2 are tracking each other because
N is larger than p. However, this may not be the case when the number of samples N is smaller when
compared with p.

Figure 3. Convergence of adequate model

3.2 Models nonlinear in parameters and nonlinear in independent variables
In the previous Subsection, adequate nonlinear model structure determination is carried out where the
model is linear in parameters and nonlinear in independent variables. In this section, adequate model
structure determination of models being nonlinear in parameters is addressed. These models can be
constructed using splines [2,5]. In this paper we do not use spline / polynomial functions for modeling.
The nonlinear function Cm(α) is estimated as a table look-up form directly [6]. The technique makes
use of linear interpolation and suitable break points are chosen to capture the nonlinearity. The reasons
for postulating this type of a model is because the wind tunnel data used to model the chosen aircraft
uses table look ups that has a similar structure, and hence, a one to one direct relation between the
estimated and the truth model is established. The proposed estimation technique does not involve any
iterative optimization process [4].  It consists of only linear interpolation and least squares estimation
to capture the nonlinearity. The criteria for termination was to achieve the same level of Adj R2 statistic
as in section 3.1.

The adequacy of breakpoints to capture the nonlinearity plays an important role and hence needs to
be determined. Initially, twenty breakpoints of angle of attack were considered with a step size of 1
degree as angle of attack ranges between –1 to 18 degrees. This yielded the regressor column size as
twenty-two and the model structure determination was carried out. Incorporating apriori knowledge in
the process of estimation is a well-known concept that can improve accuracy or save some
computational efforts. The wind tunnel data for Cm exhibited linearity for angle of attacks ranging
between –1 to 12 degrees. This prior information can be used in the estimation process to reduce the
regressor column size, which in turn increases the computational speed. Hence, we considered angle of
attack breakpoints as [-1, 13, 14, 15, 18] and performed the estimation. Further, we considered two
more cases with angle of attack breakpoints at [-1, 13, 15,18] and [-1,13, 18] for a binary search
analysis, to determine the adequacy of breakpoints leading to the adequate model structure. Table 2
summarizes the analysis to determine adequate breakpoints. We found that the 5 break point case is
optimum in terms of R2 and Adj R2 statistics. 

The nonlinear variation of estimated pitching moment coefficient is compared against its wind
tunnel truth-value in Figure 4 for the five-breakpoint case. It is noted that the end point (angle of
attack=18 deg) is captured better in case of nonlinear parameter estimation. Also, it can be noted from
Table 2 that the five-breakpoint case is adequate as R2 and Adj R2 statistics are greater than those of the
linear in parameter estimation case tabulated in Table 1.
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Figure 4. Comparisons of wind tunnel data with nonlinear and linear estimation

Figure 5 shows the model fit obtained (for the five breakpoint case) at every step compared with the
true value, obviously the fit between model arrived at step 3 and true value is satisfactory as the model
is adequate. 

Figure 5. Stepwise model matched with true model
(nonlinear estimation)

The choice of Fcritical was not very sensitive as applied to the method of nonlinear estimation whereas
in the other technique where the parameters are linear, the stepwise regression was found to be sensitive
to the choice of Fcritical. If Fcritical were chosen to be 100 instead of 50 as was chosen then α3 would not
have found its presence in the model structure. It is noted that the R2 and Adj R2 statistics were found
to be 0.9976 with exclusion of α3 in the model, which is found to be lower when compared to 0.9985
as produced by the nonlinear estimation technique.
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4. APPLICATION TO THE AERO DATABASE UPDATE OF HIGH
PERFORMANCE FIGHTER AIRCRAFT
The technique is validated using the six-DOF simulated data of a transport aircraft under Section 3, it
is important to test this technique with flight test data. Therefore, we consider a flight test data of a high
performance aircraft to update the aero database. This aircraft is longitudinally unstable and hence it is
augmented with full authority control laws. The longitudinal six-DOF simulation based on the nominal
wind tunnel data shows differences in normal acceleration, pitch rate, angle of attack and elevator
deflection when compared with corresponding flight responses. Hence it is necessary to update the
aero-database in order to match the six-DOF simulation responses with the flight responses. The angle
of attack is seen to vary from –10 to 90. It can be noted that the technique is validated using simulated
data for angle of attack ranging –10 to 180. Whereas when it is to be tested for real flight data, initially
we considered medium amplitude piloted stick inputs that could cover angle of attack ranging –10 to
90, whose results are reported here. When additional data at higher angles of attack is available we
would validate the model fit. As the aircraft short period responses do not match, the total pitching
moment is estimated using the following model, after determining the adequate structure as outlined
earlier in this paper:

(13)

Noted that the Cm has joint dependency on angle of attack and Mach number. It is a common practice
to consider Mach number constant and vary the angle of attack to generate the data for modeling Cm.
Subsequently; different such segments obtained at various Mach numbers will be concatenated to get
the dependency on Mach number. In this, paper we have reported a model for one flight segment where
the Mach number is constant. The Mach dependency will have an additional term in (13). After the
estimation is performed, the updated tables of coefficients are incorporated in the six-DOF simulations.
The simulation is again performed and the resultant response match is shown in Figure 6. 

Figure 6. Time response comparison for model postulated in (13)
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wind tunnel based six-DOF simulations. It is important to find out which component in the application
rule for the total pitching moment equation is causing this mismatch. This is a very important inference
that will help to verify and refine the control laws, as the aircraft is longitudinally unstable. To
accomplish this, a sensitivity analysis is performed. The wind-tunnel application rule for the total
pitching moment coefficient in the six-DOF simulations takes the following form: 
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(14)

where Cmq-wt and Cmδe-wt are constants for the considered flight condition.
In the sensitivity analysis, one component from (14) is removed at a time and is replaced by the

corresponding updated/estimated component. It was found that changing Cmo, Cmq, Cmδe did not
improve the fit between six-DOF simulations and flight responses. The replacement of Cm-wt (α) with
Cm-f (α)  alone improved the above-mentioned fit. Hence the modified application rule for the pitching
moment coefficient in the six-DOF simulations takes the following form:

(15)

where the suffixes ‘f’ and ‘wt’ denotes flight and wind-tunnel. The fit of six-DOF simulation responses
with flight responses after incorporating the above equation is shown in Figure 7. The fit appears
satisfactory.

It is desirable to perform one more level of validation after the database update. We choose another
flight data segment that is close to the previous segment with respect to the flight conditions. The
previously obtained estimates were validated using this segment. The match between the flight
responses and six-DOF simulation responses before and after update is shown in Figure 8. The fit
between flight and updated responses appears to be satisfactory.

In Figures 6-8, the fit for the elevator deflection is not good, however the updated responses are
closer to the flight when compared with original responses obtained using wind tunnel data. This may
be because, we updated only Cm and not the other longitudinal coefficients and also only one segment
of data is used for the estimation. Hence, in future by concatenating various segments covering a wider
range of angle of attack and by updating all the longitudinal coefficients we expect to overcome this
problem. Also note that only the aero dynamic database is updated using this technique (wind tunnel to
match flight). The control laws have not undergone any updates.

Figure 7. Time response comparison for model postulated in (15)

CONCLUSION
The paper presents the statistical measures required to arrive at an adequate nonlinear aerodynamic
model structure by evaluating two different types of nonlinear models. The model structure
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determination of models, which are nonlinear in parameters, require less computational efforts when
compared to models that are linear in parameters and nonlinear in independent variables. The results
are validated for simulated data of a transport aircraft and the technique is applied to the aerodynamic
database update of a high performance fighter aircraft.

Figure 8. Validation of postulated in (15) with another segment

Table 1: Statistical measures for model structure determination of model
being linear in parameters and nonlinear in response
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Table 2 Quantitative Analysis to determine adequacy of breakpoints for
the nonlinear estimation
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