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Interfacial Phenomena in Two-Phase Flow:

A Review
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ABSTRACT

An attractive feature of the application of Molecular Dynamics (MD) simulation to the
liquid-vapor interface in two-phase flow is that the method, well suited for the small
length-scale region which may be size-affected, can be applied in multi-scale modeling
together with continuum approach for the rest of the domain. Various studies have been
reported in literature where the method has been utilized to analyze the interfacial regions
in two-phase flow systems. In this article, the major investigations involving Molecular
Dynamics analysis applied to interfacial phenomena in two phase flow and heat transfer
systems are reviewed, with a focus on the thermodynamic, fluid dynamic and structural
properties of the liquid-vapor interface. Discussions on the nature and premises of the
reported work and a compilation of the salient features and major results are presented.
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diffusion coefficient, m?/sec

Boltzmann constant, J/K

number of molecules

cut off distance between molecules, nm or A
temperature, K

interface thickness, A

interface thickness based on density profile, A
interface thickness based on energy profile, A

o

interface thickness obtained from ellipsometry, A
reduced temperature

mole fraction

distance from the wall

condensation coefficient

time step, fs

energy parameter of potential function, J
surface tension, N/m

density, kg/m?

length parameter of potential function, A

Subscripts and Superscripts

C =

* < =

critical

liquid

vapor

reduced property
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1. INTRODUCTION

Phase change processes have various important technological applications, and hence a clear
knowledge of interfacial phenomena related to phase change is essentially required in the design of
such systems. Applications of phase change heat transfer are diverse, ranging from large heat exchange
devices, process equipment and refrigeration systems, to thermal control of micro electronics and
miniaturized electromechanical systems. As the phase change and related mass transfer are essentially
interfacial phenomena, analysis of interfaces is required to understand the physical process and to
optimize the design of phase change devices. At the macroscopic level, interfaces can be considered as
the locations where the net conversion of one phase to the other occurs in the vaporization and the
condensation processes. At the microscale and nanoscale level, the interface is a region between the
bulk phases across which the mean molecular density exhibits a gradual transition between the bulk
vapor and liquid. Experimental measurements on the truly nanometer sized interfaces are difficult to
accomplish. In addition, the thickness of the interface would be such that the continuum assumption
cannot be used, and so a discrete molecular level analysis would be ideal for an accurate investigation
of interfacial properties.

Molecular Dynamics computations offer a powerful tool to simulate and analyze physical
phenomena, and obtain thermophysical and strength-related properties in small scale and size-
affected domains [39]. In many interesting problems, this method can be used together with
conventional continuum modeling methods, to evolve multi-scale modeling strategies. One of such
situations is the analysis of two phase flow domains, with or without phase change occurring during
the flow, where the interfacial regions can be analyzed effectively with Molecular Dynamics
simulations.

A large number of studies based on Molecular Dynamics have been reported, in connection with
interfacial phenomena. A review of some of the major investigations, with a focus on the structural,
thermodynamic and dynamic properties is presented in the sections to follow.

2. REVIEW OF THE LITERATURE

A summary of the research on Molecular Dynamics simulations for the analysis of interfacial
phenomena undertaken by various investigators during the recent past are presented in Table 1. These
investigations pertain to coexisting systems with different liquid-vapor combinations. In each of the
work reviewed, the potential functions used in the analysis and the parameters studied are listed. The
salient results and observations are also shown.

Analyses leading to the estimation and prediction of various interfacial properties namely the
density, interface thickness, pressure, temperature, surface tension, diffusion coefficient, condensation/
evaporation coefficient and the structural orientation are reviewed. In most of the cases, the typical
simulation system chosen by investigators is the liquid slab with the vapor region on both sides. The
general methodology is as follows: When the liquid layer is thick enough, a bulk property for the liquid
can be obtained at the central region and also, the two liquid-vapor interfaces can be realized. The
interfacial properties can then be predicted with reasonably good accuracy with the simulation method,
applying time-averaging [35].

Discussions on the major studies are presented below, based on the focus of the analysis.
Comparisons of the results from different investigations have been presented by classifying them as
appropriate, and discussed below.

2.1. Density and interface thickness

The density profiles across the interface, and the interfacial thickness, have been determined for
different fluids using MD simulations. Results obtained with an assumption of the Lennard-Jones
potential (L-J fluids), water, alcohols and refrigerants are considered for a comparison. In the case of
MD simulations, the potential function is the primary parameter that determines the accuracy of the
simulation. Predicted density profiles are found to be qualitatively similar for almost all fluids, both in
their shape and the temperature dependence.
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Matsumoto and Kataoka [1] analyzed water and L-J fluids. The density profile was fitted using a
hyperbolic tangential function. Predicted values of liquid density for water were found to be lower by
about 15%—-25% than that of real water. A decrease in the liquid density and an increase in the vapor
density were observed with an increase in the temperature, as shown in Fig. 1 (a). The interface
thickness was determined from the density profile. The distance over which the density changes from
10% to 90% of the bulk liquid value was considered to be the interface thickness. This concept has been
generally followed in the literature. The thickness obtained from the simulated density profile (t,) was
compared with the thickness obtained from an energy profile (t,) and that from ellipsometry
measurement (t,,). The values of t; and t, were found to agree well for water than the L-J fluid, whereas
a large difference was noticed between t,; and t, for water than the L-J fluid, as shown in Fig. 2 (a) and
Fig. 5.

Townsend and Rice [2] predicted the interfacial thickness of water using spherically truncated
(ST-2) and Lemberg- Stillinger-Rahman (LSR) potential models. The value of the thickness obtained
from both models (3.45A at 300K) was found to be in good agreement with the value obtained using
x-ray reflectivity technique (3.3A). The density profile shows the same trend as obtained by Matsumoto
and Kataoka [1]. Predicted result showed that the interfacial density distribution is less affected by the
size of the system and the intermolecular potential. Maruyama et al. [3] simulated droplets of water and
argon surrounded by their vapor. For water, the simulated liquid and vapor density values differed from
the corresponding saturation values, but for L-J fluids like argon they were found to agree well, as
shown in Fig. 1 (b) and Fig. 4 (b) respectively.

The interfacial thickness determined by Alejandre et al. [4] using extended simple point charge
(SPC/E) interaction potential model for water was found to be lower than the experimental values [1]
for varying temperatures, as seen in Fig. 2 (b). They claimed that this difference is due to the effect of
capillary waves, which are absent in the simulation. Taylor et al. [5] compared the predicted thickness
using the SPC/E model for water with measured thicknesses using ellipsometry and x-ray reflection,
and also with the results of Matsumoto and Kataoka [1] using Carravetta-Clementi (CC) potential, as
shown in Fig. 2(c). Both the potentials were found to underestimate the experimental values, which
effect was attributed to the lack of considering capillary waves in the simulation. The density profile of
Dang and Chang [7] using polarizable model for water, shown in Fig. 1 (e), is quite similar to that of
Motakabbir and Berkowitz [6] and Taylor et al. [5], shown in Fig 1(d). Liquid density of 0.99g/cm? and
an interfacial thickness of 3.2A at 298K were obtained. As obvious, the liquid density obtained is very
close to the bulk density.

A comparison of the coexisting densities evaluated using the self-consistent point dipole
polarizability model (SCPDP) and SPC/E model [4] for water for a temperature range of 300—600K
with experimental values was presented by Rivera et al. [8] as given in Fig. 3 (a). The comparison
between the experimental values and the SPC/E model shows that the SPC/E model is in better
agreement with experimental results. However, the interface thickness from the SCPDP model is in
good agreement with experimental values [1] than the SPC/E model. Predicted values given by Yang
and Pan [9] for the liquid and vapor densities of water, using the TIP4P model, agree fairly well with
other models in the literature. Still, the model under-predicts the liquid density with respect to the
tabulated data in the range 3% to 10% and the relative deviation for vapor density is much larger, as
clear from Fig. 3 (b). This suggests the limitation of the TIP4P model. The interface thickness is found
to vary from 4 to 8 A within the temperature range of 300-480 K and is fitted very well with
temperature, as given in Fig. 2 (d), in the following form:

t=-10.95+0.04068 T @)
The density profiles obtained from the simulation of a thin liquid film on a solid surface by Wemhoff

and Carey [10] are qualitatively similar for both a non-polar liquid like nitrogen and a polar liquid like
water. In addition to the bulk liquid, the interface, and the vapor regions, there is a wall affected region
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Figure 1. Density profile with a tangential fit from the studies of (a) Matsumoto et al. [1],
(b) Maruyama et al. [3], (c) Alejandre et al. [4], (d) Taylor et al. [5], (e) Dang and Chang [7],
(f) Wemhoff and Carey [10].
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Figure 2. Variation of interface thickness with temperature for water from the studies of
(a) Matsumoto and Kataoka [1], (b) Alejandre et al. [4], (c) Taylor et al. [5], (d) Yang and Pan [9].

also in the density profile, as inferred from Fig. 1 (f). The existence of the peak in the wall affected
region of the density profile suggests an ordering of molecules near the surface. The bulk liquid density
value calculated for nitrogen from its density profile for reduced temperature, Tr = 0.55 is 825 kg/m?,
and this value agrees well with the ASHRAE recommended value of 840 kg/m3. However, for water,
the calculated bulk liquid density value tends to be slightly less than the ASHRAE value.

From the density profile fitted by Shi et al. [11] with the SPC/E model for water using particle-
particle particle -mesh method (PPPM) at 302 K, the interface thickness was calculated as 3.91 A and
was found to be smaller than the experimental data [1]. At low temperatures, the density values agree
well with the experiment than other models in the literature, but near the critical temperature, the
calculated liquid density is found to be lower than the experimental value, whereas the vapor density is
higher, as seen in Fig. 3(c). This shows the inaccuracy of the SPC/E model for the high temperature
simulations. Ismail et al. [12] observed that fitting the density profile with the error function yields
more accurate results than using a hyperbolic tangential fit. It was also observed that, if the effects of
capillary waves at the interface are not taken in to account, the values of interfacial width and other
properties will tend to be incorrect.

Mecke et al. [13] simulated the liquid-vapor interface for the pure L-J fluid. The system was
simulated using different cut off radii, with and without a long range correction. A comparison of the
result with the results of the NPT+ test particle method, which is known to yield very accurate results
for these properties, showed that at low temperatures, a deviation of only 1% occurs for a cut off radius
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Figure 3. Liquid-vapor coexisting curves for water (a) Rivera et al. [8], (b) Yang and Pan [9],
(c) Shietal [11].

of 5.00, with a long range correction. The discrepancy occurring at high temperature could be reduced
to 0.4%, by considering a larger system. Liquid densities obtained for varying temperatures in the
simulation of argon by Tsuruta et al. [14] are close to the corresponding saturated values, as shown in
Fig. 4(c). Trokhymchuk and Alejandre [15] investigated the liquid-vapor interface of Lennard—Jones
fluids using the Monte Carlo Method (MC) and Molecular Dynamics (MD) with truncated potentials
like spherically truncated (ST) and spherically truncated and shifted (STS) potentials. Density
values obtained with ST and STS potentials were differen at low cut-off radii. As the cut off radius was
increased to 5.5 o, this difference reduced, as both potentials approached the full L-J potential. Weng
et al. [16] investigated the effect of the film thickness on the interfacial properties of L-J fluid. The
liquid density and vapor density were found to be invariant with respect to the film thickness and were
close to the bulk saturated densities. The density profiles fitted by Ishiyama et al. [17] for the simulation
of liquid—vapor equilibrium and evaporation into vacuum are found to agree with each other, especially
at low temperatures, as shown in Fig. 4(d).

The density profile obtained by Wang et al. [18] from the simulation of evaporation using Non-
Equilibrium Molecular Dynamics (NEMD) shows the same trend as the equilibrium models in the
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Figure 4. Density profiles for L-J fluids (a) Matsumoto & Kataoka [1], (b) Maruyama et al. [3],
(c) Tsuruta et al. [14], (d) Ishiyama et al. [17].

literature. The density of the vapor is found to be increasing with time, as expected. Density profile
obtained for the simulation of thin argon film on the solid surface by Carey and Wemhoff [19] shows
a peak density in the wall-affected region and this peak diminishes away from the wall. Values of the
bulk liquid density agree well with ASHRAE recommended values.

Matsumoto and Kataoka [20] investigated the interfacial properties of methanol using almost the
same procedure as that of water and L-J fluids [1]. Simulated density values fitted well with ranh
function at any temperature. In comparison with L-J fluids and water, the relation between t; and t,
shows an intermediate behavior, i.e. t; < t,. Density profile predicted by Dang and Chang [21] for
methanol also fits well using tanh function and the estimated liquid density of 0.79 gm/cm? is very close
to the bulk value at 298 K. The calculated value of interface width at 298K was 4.6 A.

Taylor and Shields [22] simulated the liquid-vapor interface of ethanol using united- atom and all-
atom optimized potential models for liquid simulations (OPLS/UA & OPLS/AA). Temperature
dependence of the interface thickness and bulk density showed similar trend as other fluids. The density
values obtained using the OPLS/AA potential was found to be more close to experimental values.
Experimental value of the interface thickness obtained as 17.7 A was much larger than simulated
values, which suggests the absence of the capillary wave effect in the simulation.
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Chang and Dang [23] studied the interfacial phenomena of methanol-water mixture for varying
composition. The density profile for the mixture is found to be quite smooth than water or methanol.
The interface thickness is observed to be increasing with increase in methanol concentration. Paul and
Chandra [24] simulated the liquid-vapor interface of pure water and aqueous NacCl solution of different
concentration. Density profile obtained shows the same trend as other fluids. Thickness of the interface
found to decrease with increase in ion concentration.

Lisal et al. [25] studied the vapor-liquid equilibrium of alternative refrigerants using Two-Centre
Lennard-Jones Potential with a point dipole (2CLJD) model. The saturated densities obtained are found
to be in good agreement with REFPROP values. Dong et al. [26] simulated the interfacial phenomena
for the refrigerant R141b in micro/nano channel for different saturation temperatures and also for
different degree of superheat. The obtained density profile shows an increase in the interface thickness,
with increase in saturation temperature and also with increase in degree of super heat.

Senapathi [27] investigated the interfacial phenomena of dimethyl sulphoxide (DMSO) using a
flexible, nonpolarizable potential model. The temperature dependence of density profile, bulk densities
and interface thickness shows same trend as other fluids in the literature. The agreement between the
simulated values and the experimental results suggests that the model successfully describes the interface.

2.2. Surface tension

Surface tension is frequently considered to validate the potentials and the types of interactions used in
the Molecular Dynamic analysis of interfaces. Surface tension is usually determined by integrating the
difference between the normal pressure and the tangential pressure across the interface. Matsumoto and
Kataoka [1] compared their result for surface tension, obtained from an analysis of water, using the CC
potential, with experiment and found that the simulated value is only half of the experimental value.
Maruyama et al. [3] used the Laplace-Young equation to determine the surface tension of a liquid
droplet of argon surrounded by its vapor. In order to find the normal pressure distribution, the spherical
extension of Irvin-Kirkwood formula was used. The calculated values of vapor pressure and surface
tension were plotted against temperature and the simulated values were found to be matching fairly
well with the bulk value as given in Fig. 7 (a). A further analysis of the droplet size effect was also
suggested.

Alejandre et al. [4] calculated the surface tension values for water with SPC/E potential with Ewald
sum for long range correction. The simulated values were found to decrease with an increase in
temperature, and were found to be in good agreement with experimental values as shown in Fig. 6 (a).
Taylor et al. [5] calculated the surface tension of water using the theory of Kirkwood and Buff with
SPC/E potential. The predicted results were compared with data from experiments and also with the
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Figure 7. Variation of surface tension with temperature for L-J fluids: (a) Maruyama et al. [3],
(b) Mecke et al. [13].
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results from Alejandre et al. [4], who performed the simulation under similar condition, but had
included the long range interaction. It was observed that by using the long range interaction, results of
Alejandre et al. showed excellent agreement with experimental data as shown in Fig. 6 (b). To examine
the quality of the developed polarizable potential model for water, Dang and Chang [7] calculated the
surface tension at the liquid-vapor interface. A value of 92 dynes/cm was obtained, which is in
reasonably good agreement with the experimental value of 72 dynes/cm. Rivera et al. [8] compared the
surface tension values obtained for water with SCPDP model, with data from experiments and with the
results of Alejandre et al. [4]. Results of Alejandre et al. found to agree better with the experimental
values than the SCPDP model. It is also found that their result shows better agreement with
experimental result while plotted against reduced temperatures, especially at higher values.

Shi et al. [11] determined the surface tension of the liquid-vapor interface of water using SPC/E
potential with PPPM for long range interaction, and compared the results with thermodynamic
correlations based on the equation of corresponding states for the surface tension of water. The result
is shown in Fig. 6 (c). Simulation results agree very well with thermodynamic correlations especially
at low temperatures. This agreement shows that long range interaction is to be considered during the
calculation of surface tension. At high temperatures, because of the decrease in liquid density and
increase in vapor density, the calculated value of surface tension is found to be different from the
experimental value. Another reason pointed out for this disagreement is that the two interfaces of the
interfacial film may not be independent due to long range interaction. So a thicker film was suggested
for performing the simulation. Ismail et al. [12] compared the surface tension of water simulated using
SPC/E potential with other three- point models including SPC/E models of Alejandre et al. [4] and Shi
et al. [11], and also with other four-point models in the literature. The results from Alejandre et al. and
Shi et al. were found to show better agreement with experimental data than any other models.

Mecke et al. [13] observed that by using a cut-off radius of at least 56 and with a tail correction, the
surface tension values of L-J fluids will tend to a theoretical value of full L-J potential, as shown in
Fig. 7(b). Trokhymchuk and Alejandre [17] noticed that surface tension values of L-J fluids, estimated
by using ST and STS truncated potentials converge to full Lennard -Jones results by employing a cut-
off radius of 5.56. Weng et al. [16] observed that for a particular temperature, surface tension varies
only slightly with varying film thickness and the average value is 0.78 at a reduced temperature of
0.818. The obtained value is found to be matching with the result of Mecke et al. [13].

Matsumoto and Kataoka [20] observed that the calculated surface tension values for methanol are
20%-30% less than that of real methanol. At the same time, Dang and Chang [21] noted that the
predicted value of surface tension is 25 dynes/cm for methanol, and is found to agree with the
experimental value of 23 dynes/cm. Simulation was found to under predict the value of surface tension
for ethanol, as observed by Taylor and Shields [22].

Surface tension values calculated for methanol-water mixture [23] are found to decrease with
increase in concentration and also agree with experimental results. For aqueous NaCl solutions [24],
the surface tension is observed to increase with increase in ion concentration and is in good agreement
with experimental results. Paul [34] investigated the interfacial properties of water-trimethylamine-N-
oxide (TMAO) mixture for varying TMAO concentrations (x,,.). The calculated value of surface
tension was found to decrease with an increase in x,,  and further, this decrease was found to be more
rapid after X =0.5.

The predicted results of Dong et al. [26] for refrigerant R141b show a large fluctuation in the surface
tension across the interface. A decrease in surface tension with an increase in saturation temperature
and degree of superheat was also observed. A linear decrease in the surface tension with an increase in
temperature was observed in the case of DMSO [27].

2.3. Pressure and temperature

Only very few investigations are available in the literature that predict the pressure and temperature
distributions at the interface. Trokhymchuk and Alejandre [15] studied the effect of cut off radius on
the pressure-temperature coexisting curves of L-J fluids using ST and STS truncated potentials. As in
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the case of density, for a cut off radius of 5.56, both models approached the full L-J potential. An
improved method developed for pressure calculation by Weng et al. [16] showed less fluctuation in the
predicted pressure distribution across the interface than the usual method. Pressure was found to
decrease gradually from the liquid to the vapor region across the interface in the NEMD simulation by
Wang et al. [18]. Carey and Wemhoff [19] predicted the equilibrium vapor pressure for a thin liquid
film on a solid surface, which was plotted against thickness of the film. A reduction in predicted vapor
pressure from the saturated value, for a film thickness of less than 1.5nm at the reduced temperature
T = 0.6 indicates the influence of solid-liquid intermolecular attraction, and there by suggests that the
disjoining pressure is to be considered in the modeling of thin film transport. The vapor pressure values
predicted by Lisal et al. [25] for different alternative refrigerants agree well with REFPROP.

Guo et al. [30] observed a monotonically varying temperature distribution across the liquid-vapor
interface and also noted that the temperature at the interface is higher than the saturation temperature.
Wang et al. [18] also have observed in their simulations that the temperature increases gradually from
vapor to liquid region across the interface. A significant fluctuation in the local temperature values
across the interface was observed in the simulation of R141b by Dong et al. [26].

2.4. Diffusion coefficient

Molecular Dynamics simulations, among other discrete computational methods, have been used to
predict the diffusion coefficient in some investigations. Townsend and Rice [2] observed that the
diffusion coefficient for water at the interface is 58% higher than in the bulk liquid region. Taylor et al.
[5] calculated the self diffusion coefficient of water molecules at the surface and in the bulk, using
Einstein relation for varying temperatures. Diffusion was found to be faster at the surface than in
the bulk. Simulated value for bulk liquid was found to agree fairly well with the experimental data
as shown in Fig. 8(a). Dang and Chang [7] calculated the diffusion coefficient for bulk water as
2.1 x 107 cm?/sec, which value agrees well with the experimental result of 2.3 X 107 cm?/sec at 295K.
Liu et al. [28] developed a method to determine the self diffusion coefficient in a finite region. They
calculated the variation of the diffusion coefficient with respect to distance from the interface of water.
Away from the interface the value was obtained as D =~ 0.22 A%/ps, which is in agreement with
experimental bulk value. They suggested that the difference in the bulk and interfacial value is because
of the existence of a fewer number of hydrogen bonds at the interface. At the interface, the diffusion
coefficient was found to be anisotropic with values of the perpendicular and parallel components being
D, = 0.5 A%ps and D, = 0.8 A%/ps, respectively.

Dugque et al. [32] predicted the diffusion coefficient at the liquid-vapor interface of L-J fluids using
intrinsic sampling method at different temperatures. Parallel diffusion coefficient at the reduced
temperatures T* = (k;T/e) = 0.848 — 0.212, was observed to be almost 2—4 times larger than the bulk
value, depending on the temperature. Perpendicular diffusion coefficient was found to be less than that
of the parallel component, but more than the bulk value.

Dang and Chang [21] computed the self diffusion coefficient for methanol using mean square
displacement method. The simulated value was found to agree with the experimental value. Self
diffusion coefficient predicted by Taylor and Shield [22] for ethanol is found to be high at the surface
than in the bulk fluid and is found to increase with an increase in temperature, as shown in Fig. 8 (b).
Self diffusion coefficients for both water and TMAO were found to decrease with an increase in x,
up to X, = 0.5 and then increase, according to the investigation by Paul [34].

Senapathi [27] calculated the self diffusion coefficient of dimethyl sulfoxide (DMSO) from the
velocity auto correlation function. The calculated value at the interface, as shown in Fig. 8(c), was
found to be more than in the bulk value. The value was also found to increase with an increase in
temperature as in the case of water [2, 5]. The simulated values of the self diffusion coefficient for bulk
DMSO liquid was found to agree well with available experimental results.

2.5. Condensation and evaporation coefficients
To determine the net condensation or evaporation rate during phase change, an accurate evaluation of
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Figure 8. Self diffusion coefficient as a function of temperature: a) Taylor et al. [5], (b) Taylor &
Shields [22], (c) Senapathi [27].

the condensation or evaporation coefficient is required. A Molecular Dynamics analysis of
condensation or evaporation coefficient would be very much useful for this purpose. Condensation
coefficient is defined as the fraction of incident molecules which condense on the liquid surface, while
the evaporation coefficient is the fraction of molecules leaving the surface which get converted to
Vapor.

Yang and Pan [9] observed that the effect of the hydrogen bond due to the polar structure of water
may recapture the molecules just evaporated and tend to reduce the evaporation coefficient. This effect
is found to be dominant at low temperatures. It was also observed that, with an increase in the pressure,
the evaporation coefficient increases. Matsumoto [29] investigated the dynamic behavior of molecules
during condensation and evaporation. It was observed that due to molecular exchange, which does not
contribute to condensation, the condensation coefficient is much less than unity for associating fluids
like argon, water, etc. It was also concluded that the condensation coefficient is strongly dependent on
the temperature, even for simple fluids as shown in Fig. 9(a).

Tsuruta et al. [14] conducted an analysis of argon molecules to investigate the effects of translational
motion of mono-atomic molecules on condensation and evaporation coefficients. It was observed that
both the coefficients increase with the normal component of translational energy and decreases with an
increase of system temperature. Ishiyama et al. [17] determined the condensation/evaporation
coefficient for argon liquid in vacuum. The predicted value was found to be close to unity below triple
point and it was found to decrease with an increase in temperature. The values were compared with
other models in the literature, as shown in Fig 9(b). Evaporation coefficients calculated by Wang et al.
[18] using NEMD simulation were found to agree with data from transition state theory and also from
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other equilibrium models in the literature. However, the same results show large deviations compared
to the data from Matsumoto et al. [38], especially at high temperatures, as seen in Fig. 9(c).

2.6. Structural orientation

Orientation distribution of water molecules at the liquid-vapor interface plays a large role in
determining the reactivity of the interface. Some important investigations have been undertaken in this
area. Matsumoto and Kataoka [1] studied the orientation ordering of water molecules near the interface
using the CC potential. Two types of orientations were observed - in the vapor side, one hydrogen atom
of a water molecule projects towards the vapor and in the liquid side, a molecule tends to lie down on
the surface with both hydrogen atoms slightly directed towards the liquid. For water, this orientational
tendency is found to be reduced at high temperatures. Taylor et al. [5] also observed two distinct
orientations of water molecules at the interface, with the dipole of the water molecule at the vapor side
directed out of the liquid at an angle of 74°, and on the liquid side, with the dipole lying in the plane of
the surface with both hydrogen atoms pointing slightly towards the liquid. Matsumoto and Kataoka
[20] have suggested that the orientation ordering of methanol is much stronger than water as it is having
a hydrophobic methyl group projecting from the vapor to the liquid phase. Ordering is found to exist
for methanol even at high temperatures.
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Chang and Dang [23] observed that the surface structure of methanol-water mixture becomes less
ordered with an increase in the methanol concentration. Hydrogen bonding at the interface was found
to increase with an increase in the methanol concentration. The dipole moment of methanol molecules
was found to become larger in the mixture, compared to the bulk value. Paul [34] observed that the
dipole vector of interfacial water molecule changes with a change in the TMAO concentration and that
this vector orients itself to maximize the hydrogen bonds.

3. CONCLUSIONS

Molecular Dynamics Simulations provide a reliable methodology to analyze interfacial phenomena and
predict relevant properties at the interface in two-phase flow systems. Considerable amount of research
efforts have gone into the fundamental problem, which will lead to applications in systems, especially
those require accurate design procedures, such as micro and nanoscale systems utilizing phase change
heat transfer. A detailed review of the results obtained during the Molecular Dynamics simulation of
interfacial phenomena for the two phase flow reveal that properties such as the density, interface
thickness, surface tension, pressure, temperature, diffusion coefficient, condensation/evaporation
coefficient and structural orientations have been predicted using the simulation method, for different
fluids.

The most important parameter that is found to cause deviations and variations among the results
from various investigations is the choice of the potential function used in the analysis. For instance, in
the case of water, the results obtained using an SPC/E model with long range correction is found to be
more close to experimental results than those obtained using other potential models. When a fluid can
be approximated as a Lennard-Jones fluid, application of the L-J potential with a cut off radius of 56
is recommended. The density profiles obtained for all fluids studied, irrespective of the potential
function and the temperature selected, show qualitative agreement. It is found that these could be fitted
fairly well using ranh function. In the case of water, an interface thickness of the order of 4-9 A in the
temperature range of 300-500K has been observed in the simulation results, whereas the experimental
values are found to be more than this in most of the cases. A suggestion from the literature is that the
capillary wave effect which is absent in simulations has also to be considered for obtaining an accurate
value of the interface thickness. For the L-J fluid, a higher value of interfacial thickness than water has
been observed. Irrespective of the method of calculation and the potential used, the diffusion coefficient
determined has been found to be high at the interface than in the bulk fluid.

Only very few investigations deal with the simulation of the temperature and pressure variation
across the interface. The importance of disjoining pressure, which occurs in thin films in contact with
solid walls, has generally been investigated only for L-J fluids. Such studies could be extended to
realistic fluids with appropriate potential functions, relating them to practical applications. It is also to
be noted that analyses, in most of the cases, have been performed only for the basic geometry of the
liquid slab. Extension of the methodology to domains with other interfacial geometries would provide
interesting results in the analysis of evaporation and condensation systems in space applications or
rarefied flow situations.
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