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Abstract

FEM model of the double helical structure of the DNA together with the interconnecting
hydrogen bonds is developed in this work. The results of the FEM model is compared
with the simplistic equivalent rod model. Simulations for deformations under axial,
torsional, radial and bending loading are performed. The action of enzymes on DNA can
be assumed to be in the form of combination of these loadings. Normalized results of
axial, torsional, radial and bending stiffness are computed. The effect of hydrogen bond
stiffness on these quantities is analysed. From the results obtained it is inferred that
though the hydrogen bond stiffness value has no effect on the axial and torsional
stiffness, the radial and the bending stiffness are affected by the hydrogen bonds. Beyond
a critical value of the bond stiffness it is observed that the bending and radial stiffness
undergo a rapid change and stabilize to a higher value. The results obtained from the
present work thus identify the parameter regimes of applicability of the equivalent rod
model.

1. INTRODUCTION

Deoxyribonucleic acid (DNA) is a macromolecule which stores the genetic information necessary for
the development and functioning of living organisms. DNA is present in every cell of a living organism.
The DNA molecule lies highly coiled (or supercoiled) within the chromosome contained mostly in the
nucleus of the cell. During cell division process, the genetic code contained within the DNA is
replicated. The traits of the offspring is determined by the genetic code received from its parent cells.
Due to its central role in determining characteristics of living organisms, it has been an area of active
research since its discovery [1].

The DNA structure comprises of double hellical strand made of sugar and phosphate groups. The
individual strands are bonded together by four types of nucleobases - namely Adenine (A), Guanine
(G), Cytosine (C) and Thymine (T). The sequencing of these bases determine the genetic code of an
organism. Further, there is selective pairing between these bases; A bonds with T while C attaches to
G. Due to this selectivity, during cell division the DNA sequence is preserved. DNA takes part in
biological processes like protein synthesis and cell division through transcription and replication. A
complimentary copy of Ribooxynucleic acid (RNA) is made in the transcription process, while in the
replication process an identical copy of the DNA is made. In both these processes, the supercoiled DNA
uncoils at the initiation of the process and then again coils back on completion of the process. Thus,
due to its pivotal role in crucial biological processes, the study of DNA supercoiling has received great
attention in the research community.

Numerous factors determine the mechanics of DNA supercoiling, namely :- the molecular structure,
sequence of nucleobases, the strength of the hydrogen bonds, electronic interactions holding the
helices, etc. But the measurement of such properties of the molecule is diffcult. Charvin et al. [2] have
presented a review of different experimental techniques available for measuring the stretch and twist of
DNA molecules. Their work detailed the process of estimating torsional modulus of DNA structures.
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The measurement procedure of Young’s modulus in the radial direction is described in the work of Yi
et al. [3]. Strick et al. [4] discussed experimental results obtained using magnetic field gradient to
measure and control the applied force on DNA. Both stretching and torsional experiments were
performed in this manner. The authors were able to quantitatively monitor and control the supercoiling
of the DNA on application these forces. The review by Bustamante et al. [5] presented different
experimental methods to measure the elastic properties of DNA at the single molecule level. They
present the force versus extension data obtained through experiments. Experimental techniques which
can directly measure the mechanical properties of DNA are relatively new and high-resolution
visualization is often difficult. Hence, modeling of the molecule is done to understand its mechanics.
Further parametric study to understand the effect of the diffferent variables affecting the deformation
phenomenon can be effectively carried out with the help of an accurate model. There has been a lot of
effort among the researchers to arrive at a mechanical deformation model of the DNA molecule which
explains the process of supercoiling and uncoiling.

Bruant et al. [6] have pointed out the challenges that lie in obtaining the experimental data relating
to DNA deformation. They advocate the use of appropriate modeling and simulation technique. The
work has described the applicability of accurate but time consuming molecular dynamics modeling as
well as simplistic mesoscopic models for DNA. Their work effectively bridges the two diverse
modeling techniques . The authors argue that some useful understanding can be brought through simple
continuum level models especially for long chain DNA. Lankas et al. [7] presented results of elastic
constants of different DNA strands determined through molecular dynamics simulation. One of the
simplest continuum level model is the equivalent rod model, wherein the double hellical DNA structure
is approximated as a rod of uniform circular cross-section. The model has been used by different
researchers in variety of applications. Balaeff ef al. [8] have used the model to study the shape of the
DNA when acted upon by a specific enzyme. Their work justifies the applicability of the inextensible
rod model for DNAs. As the authors argue, the efffect of short molecular interaction forces can be
adequately captured through such continuum based models. Numerical solutions are obtained based on
the principle of equilibrium of applied forces and torques and principle of minimization of the elastic
energy. For calculating deformation characteristics of long chain DNA, Hunt et al. [9] have used the
elastic rod model without consideration of end effects. The bending energy per unit length of the
structure was calculated and then the deformation state was found which minimized the elastic potential
energy associated with bending. Stump et al. [10] applied the elastic rod model to predict the shape of
the supercoiled DNA structure. The sugar-phosphate hellical strand is modeled as an inextensible rod.
Gross properties of the supercoiled molecule (e.g. number of crossovers, ratio of end loop length to
base length) were computed through this model and compared with the available experimental data.
Hoffman [11] translated the DNA supercoiling problem into that of finding the stable equilibrium
solution of the equivalent rod. This equivalent rod is assumed to be inextensible and unshearable. The
stable equilibrium deformation state of the structure is known to minimize the elastic energy functional.
Thus, the author performed a variational formulation for the problem. Additionally, there are integral
constraints imposed which prohibited the direct use of known classical solution methods. A novel
solution method (distinguished-diagram method) was formulated for tracking the solutions. An
analytical study of the geometry and energetics of the DNA deformation process is presented by Ricca
and Maggioni [12]. The derived equations prescribe the deformation state by assuming the DNA to be
in the form of a circular inextensible filament. Based on the energy requirement calculations of the
coiled state, the authors ascertained the favourability of coiling of the DNA structure as a means for
relaxation of elastic energy. Wadati and Tsuru [13] studied the deformation pattern of DNA using the
energy calculations of the equivalent rod model. The authors effectively used formulation based on
topology and differential geometry in their analysis. The change in configuration from a circular DNA
ring to a figure of 8 shaped pattern is desrcribed in details in their work. Tobias et al. [14] determined
the stability of equilibrium configuration of DNA segment by minimizing the sum of the stored elastic
energy and work potential of the applied forces. The stability criteria they formulated is demonstrated
to be valid for both closed and open chain DNAs with strong anchoring boundary condition. Through
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an example calculation performed on a DNA miniplasmid, the authors demonstrated the effect of
geometrical and material parameters on the stable equilibrium configuration. The derived stability
criteria was applied to DNA miniplasmids with self contact forces [15]. Herein, bifurcation studies are
accomplished for all possible deformation states of the structure. Symmetry pattern of the possible
solution states were also discussed in great details. A review of different analytical and numerical
modeling work pertaining to DNA supercoiling is presented by Schlick [16]. Here, the author observed
the diffculty in producing analogous experimental data. In particular, the review details the work done
on buckling aspects of the equivalent rod model. Munteanu et al. [17] presented a review of different
rod models (isotropic and anisotropic) of DNA. The authors compared the ability of these models in
predicting local bending characteristics of DNA structures.

As highlighted by Olson and Zhurkin [18], ideal elastic rod models ignore the effect of sequence
dependence of the DNA structure as also other anisotropic effects. They point out biological processes
wherein such local anisotropic effects are crucial. Gromiha et al. [19] pointed out that sequence
dependent bending cannot be captured by isotropic equivalent rod model. In their work, the authors
have used a Finite Element Model through a commercially available package to calculate this
anisotropic bending behaviour. The model itself is developed by considering the DNA structure to be
an assemblage of short uniform rods. The properties of each of these short uniform rods is estimated
based upon the sequence of nucleobases along the DNA strand. Though for each short uniform rod the
governing equations are no more complicated than that obtained by the equivalent rod model, the
governing equations of the assemblage turns analytically untractable and hence FEM is employed.
The reported results was found to be encouraging as it compared well with other experimental data. The
finite element method was used in calculations of large deformations in DNA by Bauer et al. [20]. The
DNA structure itself is assumed to be in the form of an equivalent elastic rod. Finite element method
has been employed in simulating the deformation characteristics of the equivalent rod. The results
reinforce the observation that DNA structure do attain their minimum energy state. Parametric studies
with differ-ential geometric parameters of the DNA hellix (e.g. linking number, writhe number,
twist, etc.) are carried on. Four different relaxed DNA states are simulated - straight DNA, two straight
segments of DNA having a bend of 20°, three straight segments of DNA each having a bend of 20° and
circular ring shaped DNA.

As brought out through the above discussion, there has been voluminuous work done on the
mechanical modeling of DNA deformation. Among them, the equivalent isotropic continuous rod
model has been well received in the research community. As pointed out in the literature, though this
simplistic continuum description does explain certain observed characteristics of the DNA, it fails to
capture some other effects such as anisotropic bending, sequence dependence deformation
characteristics, etc. This drawback stems from the incomplete geometric modeling of the DNA
structure. To mitigate this drawback, we use Finite Element Method (FEM) of modeling the DNA
structure in the present work. Through FEM, the exact geometry of the double stranded linear
DNA macromolecule is captured. Though there has been some earlier work on FEM modeling of DNA
structures, these models have not modeled the double hellical structure of the DNA together with the
connecting nucleobases. They have attempted to capture anisotropic effects by considering the DNA
structure to be an assemblage of short uniform rods with varying properties along the axis. In this sense,
the current work captures the exact geometry and the interatomic bonds of the double stranded DNA.
The objective of the present study is to simulate the deformation of DNAs under some standard loading
conditions - namely bending load, axial load, torsional load, pressure load. It is assumed that the
enzyme action on DNA is a combination of these loads.

Another issue associated with modeling techniques is that the model input data is taken from
different experiments scattered in the literature. The reliability of this data is not very high. In
particular, the hydrogen bond stiffness values associated with the nulceobases which effectively holds
the two strands have not been known to a high level of confidence. Using FEM simulation, we perform
a parametric study for different values of the hydrogen bond stiffness under four different types of
loading, namely - axial, bending, torsional and radial. These results are then compared with that
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obtained for the simplistic model wherein the interconnecting hydrogen bonds are ignored. The aim of
this parametric study is to infer the parameter regimes under which simplistic model is accurate and
conversely conditions under which it is innaccurate.

2. FINITE ELEMENT MODEL DEVELOPMENT
Finite Element Method is a popular numerical technique for simulating the deformation of complicated
mechanical, civil and aerospace structures. It is based on the principle that the stable equilibrium
configuration is that which minimizes the elastic potential energy. The method approximates the
deformation using compactly bounded local approximating polynomial field. The coeffcients
associated with these interpolating functions are found by minimization of the elastic potential energy
of the structure. For the purpose of implementation, the analyst needs to divide the complicated
geometry into smaller, simpler blocks called elements. Equilibrium equations are formulated first at the
element level and then assembled to give the equations at the global level. The solution of these
equations determine the solution at discrete points known as nodes. For a more detailed introduction to
this subject, the reader is referred to classical textbooks on the subject [21, 22].

In the present work, we formulate the geometry of the two hellices with its axis along the z-direction as

r.(6) = a cos(0)i + a sin (0)j + b0k and ,(6) = — a cos(6)i — a sin(0) ) + bok, (1)

where 0 is the parameter for the curve, a is the radius of the helix and 27b is the pitch of the helix.
i ,},k represents unit vector along the z, y, z direction, respectively. Using the geometry equation
described as above, discrete node points are generated. Each node points are connected with elements.
The chosen element has six degrees of freedom corresponding to translations and rotations about the
three axis. These are schematically illustrated in Figure 1. Accordingly, the element can capture the
effects of axial force, transverse force, bending moment and twisting moment. This element can be thus
considered to be a synthesis of the traditional bar, beam and rod elements. The element-wise local
stiffness matrix is transformed to global coordinates using transformation matrices as described in [22].
The analysis is limited to small deformations. Large deformation of the structure entails nonlinearity in
the governing equations [23] which are not accounted for in the present work. However, as pointed out
in [7] this assumption is not restrictive.

The steps of computation described above was done by developing an indigenous code. For
validation of the developed code, the model was used to calculate the spring stiffness of a helical spring.
The answer obtained was compared with known analytical solutions [24] and was found to be in
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Figure 1. Schematic illustration of the degrees of freedom chosen in the element.
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Figure 2. Finite element model of the DNA with lumped springs used to model the
interconnecting hydrogen bonds.

agreement for small helix angles. The analytical solution itself had the limitation of being applicable
only for small helix angles. Next, a simulation was performed to find the axial stiffness of the double
helical spring. Again the computed results were found to be matching with known analytical solution
of determining stiffness of springs in parallel.

Finally, the hydrogen bonds are modeled as lumped springs connecting the two strands. The
changes in the stiffness matrix of the the DNA structure due to this effect can be easily
incorporated. A schematic representation of the Finite Element Model for DNA thus developed is
shown in Figure 2.

3. RESULTS AND DISCUSSION

As described earlier, the value of hydrogen bond stiffness is not known accurately through the
literature. In the present work, we undertake a parametric study by varying this parameter through 8
orders of magnitude (1072 to 10° N/m). One end of the DNA is assumed fixed and on the other end four
different kind of loading conditions are applied. The loading conditions are namely (i) axial loading
with an axial force at the tip (ii) torsional loading with a twisting moment applied at the tip (iii) radial
load along the circumference of the tip (iv) bending load in the form a transverse load acting at the tip.
These loadings are schematically shown in Figure 3. More complicated loading conditions can be
generated as a combination of these loads.
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Figure 3. Schematic illustration for various loading conditions on the finite element model (a)
Axial loading (b) Torsional loading (c) Radial loading (d) Bending loading.

3.1. Axial loading

The tip deflection of the model described above is calculated due to a unit axial load. The reciprocal
of the tip deflection is the axial stiffness of the DNA molecule calculated by including the effect of
hydrogen bonds. A repeat calculation of the axial stiffness is done using the same procedure but by
ignoring the hydrogen bonds. This is easily implemented in the computational program by changing
the stiffness of the lumped springs (making up the hydrogen bonds) to zero. The results are
presented in a normalized manner in Figure 4. The axial stiffness of the actual DNA structure
containing the hydrogen bonds is normalized with respect to the axial stiffness of the DNA structure
ignoring the hydrogen bonds. The x-axis of the plot shows the variation in the chosen value of
hydrogen bond stiffness. This is again non-dimensionalized with respect to the axial stiffness of the
structure ignoring the interconnecting lumped springs. As observed from the plot, the presence or
absence of the hydrogen bond does not substantially alter the results of axial stiffness. Thus, based
on this result we might conclude there is no effect of hydrogen bonds on the axial stiffness of the
DNA structure.

3.2. Torsional loading

The DNA structure is subjected to a unit twisting moment applied at the tip. The rotation of the end
cross-section is calculated. The reciprocal of the computed rotation is the torsional stiffness. The
computation is repeated by ignoring the presence of hydrogen bonds. Figure 5 shows the normalized
results as a function of the hydrogen bond stiffness. The x-axis of the figure is the normalized hydrogen
bond stiffness. The normalization procedure is identical to that described in the previous case of axial
loading. The results in figure 5 shows that there is no effect on the torsional stiffness of the molecule
due to the presence of the hydrogen bonds.

3.3. Radial loading

Radial load of unit magnitude is apportioned between all the nodes in the tip cross-section. The
computed radial deflection is inverted to obtain the radial stiffness. The computation is repeated by
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Figure 4. Variation of the axial stiffness with the stiffness of the hydrogen bond.

ignoring the presence of hydrogen bonds. Figure 6 presents of plot of the normalized results. The
y-axis of the plot represents the ratio of the radial stiffness computed with and without the hydrogen
bonds, whereas the x-axis is identical to that in figures 4 and 5. In this case, we observe from the results
that beyond a critical value of the bond stiffness, the radial stiffness of the DNA structure does get
affected with the value chosen for the compliance of the hydrogen bonds.
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Figure 5. Variation of the torsional stiffness with the stiffness of the hydrogen bond.
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Figure 6. Variation of the radial stiffness with the stiffness of the hydrogen bond.

3.4.Bending loading

The DNA structure is subjected to a unit transverse bending load at the tip. The reciprocal of the
computed tip deflection is the bending stiffness. As in the earlier cases, the calculation is repeated by
ignoring the hydrogen bonds. Figure 7 shows the normalized result of the ratio of bending stiffness with
and without the consideration of hydrogen bonds. The x-axis of the figure as in the earlier cases is the
ratio of the hydrogen bond stiffness to the axial stiffness of the molecule obtained by neglecting the
hydrogen bonds. The results obtained show that the bending stiffness does change drastically at a
critical value of the hydrogen bond stiffness value.
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Figure 7. Variation of the bending stiffness with the stiffness of the hydrogen bond.
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From the results arising out of the different cases of loading reported above, we infer that the axial
and torsional mechanics of DNA structure is not affected by the hydrogen bonds. However, bending
and radial mechanics is grossly changed beyond a critical value of the hydrogen bond stiffness. Further
the results in Figure 6 and 7, suggest a two-layered asymptotic behaviour of the axial and radial
stiffness. Below the critical value of hydrogen bond stiffness, results of the axial and radial stiffness are
virtually unaffected. For values of hydrogen bond stiffness much greater than this critical value, the
stiffnesses again is observed to be constant. In the intermediate values of bond stiffness, there is a
transition region connecting the low stiffness values with the higher stiffness values. These results
clearly suggest the inadequacy of the equivalent isotropic rod model to capture the overall mechanics
of the DNA structure. Though certain aspects of the deformation mechanics can be captured using the
equivalent rod model, a wholistic understanding of the mechanics may not be possible.

The inference arising out of the above numerical simulation is further reinforced by consideration
of principle of minimum potential energy. This well-known principle in mechanics states that the
equilibrium state of a deformable body is that which minimizes the stored elastic potential energy and
the work potential of the applied forces [22]. Accordingly, for the interconnecting lumped springs to
have a role in the deformation process of the DNA, there should be a stretch or compression of the
springs. Due to axial loading applied to the DNA structure, the particles move mainly in the axial
direction. There is a minor change in the coil radius brought about due to the Poisson effect. As the coil
radius remains unchanged, the interconnecting springs are in a relaxed state throughout the deformation
process for any value of the applied loading (within the linear regime). Thus, it is expected that the
deformation due to axial loading is unaffected by the presence of the hydrogen bonds. Similar analogy
also holds for the torsional loading in which case the cross-sections of the structure undergo relative
rotation. These rotations do no affect the length of the interconnecting springs. As such, the springs
have no contribution to the total elastic potential energy of the structure. The situation is changed for
radial loading which tends to create a radial deformation in the coil. The radial deformation causes a
change in length in the interconnecting springs and as a result a difference in the potential energy of the
DNA structure. In case the springs are compliant, the additional energy stored in the springs is a small
fraction of the total elastic potential energy of the structure. However, for stiffer springs the elastic
potential energy in the springs have a major contribution to the total stored energy of the structure.
Therefore, the torsional mechanics is affected by the interconnecting springs. Similarly, the lumped
springs act as stiffeners to the DNA structures in case of bending deformation. The effective moment
of inertia of the bending cross-section increases as the stiffness of the interconnecting springs increases.
It is know that the moment of inertia of the cross-section is directly proportional to the bending stiffness
[24]. Hence, it is expected that the interconnecting spring stiffness will be an important factor for the
bending type deformation. Thus, the results obtained from the FEM simulation are in corroboration
with the fundamental principles of mechanics.

4. CONCLUSION

Equivalent rod model of DNA structures has received wide patronage in the research community in
describing different facets of DNA mechanics. The principal source of limitation of the equivalent rod
model arises due to the approximation of the double hellical structure into a uniform circular rod. Also,
the effect of interconnecting hydrogen bonds is neglected. In this work, a finite element model is
developed for the DNA structure. The present model captures the exact double hellical geometry as
well as the interconnecting hydrogen bonds of the DNA. However, the stiffness value of the
interconnecting hydrogen bonds is not known accurately from the available literature. A parametric
study is thus undertaken for a range of values (8 orders of magnitude) of the hydrogen bond stiffness.
Computations are done to find the stiffness due to axial, torsional, radial and bending load conditions.
The results indicate that for axial and torsional loading the presence of the hydrogen bonds have no
effect. Thus, under these loading conditions the equivalent rod model is inferred to be accurate.
However, for radial and bending loads the hydrogen bonds is observed to have a pronounced effect.
Beyond a critical value of the hydrogen bond stiffness parameter, the radial and bending stiffness
rapidly increases and saturates to a high value. These findings are also justified qualitatively based on
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the principle of minimum potential energy. Therefore, we conclude from this study that for accurate
modeling of the general deformation characteristics of the DNA structure, the FEM based model is
more accurate than the equivalent rod model.
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