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Abstract
Streaming potential is one of the four major electrokinetic phenomena where the flow of
aqueous electrolytes due to an applied axial pressure gradient causes the generation of an
induced axial electric field. The field may be evaluated by considerations of a net zero
current due to the absence of an applied axial electric field. We elaborate on the theoretical
aspects of streaming potential from fundamental considerations of electrostatics and fluid
mechanics. Later, we focus on an exciting and futuristic application of streaming potential,
where the induced electric field is tapped to drive a current through an external resistor
thereby allowing one to convert mechanical energy into electrical energy.

1. INTRODUCTION
Miniaturization of many devices having functionalities such as flow actuation, mixing, energy
generation, particle separation etc. have been made possible in recent times due to several novel
fabrication techniques [1-12]. Shrinking the pertinent length scales down to several tens of nanometers
unveils a large number of phenomena which affect the transport processes that are otherwise negligible
or absent at larger scales. A prominent example of one such phenomenon is the spontaneous charging
of the walls of the substrate (channel) in the presence of an aqueous electrolyte. The presence of a
charged substrate leads to Coulombic forces of attraction and repulsion on oppositely and like-charged
species (counterions and coions respectively); the result of this being the formation of a charged
interfacial layer near the wall. This makes flow manipulation by electric fields a very viable option due
to advantages such as ease of on-chip integration (electrode sputtering), low solutal dispersion and so
on [13-16]. The transport processes where such a charged mobile layer interacts or induces electric
fields due to relative motion between the substrate and solution are collectively termed as
electrokinetics [13-16]. Broadly speaking, this encompasses electroosmosis (generation of flow in
aqueous solutions by the application of an applied electric field), electrophoresis (electric field induced
transport of particles), streaming potential (generation of electric field due to a pressure driven transport
of aqueous solution) and sedimentation potential (generation of electric field due to gravity driven
sedimentation of charged particles) [13-16]. In this article, we focus on the fundamental aspects of
streaming potential and attempt to quantify the same beginning from basic considerations of
distribution of charges in the aqueous solution and the concomitant fluid flow.

From the above discussion, it is clear that the presence of a charged layer close to the wall is pivotal
to all the electrokinetic phenomena. The charged interfacial layer, known as the electrical double layer
(EDL), will therefore be the first topic of study in this article. The region near the walls is charged while
the bulk region remains neutral. When this aqueous solution is driven by an axially applied pressure
gradient, there is a net flux of ions downstream which is also known as streaming current or the
advection current [15-16]. For example, as depicted in Fig. 1, the negatively charged walls lead to a net
positively charged mobile layer which leads to a net positive advection current. However, in the
absence of any externally applied electric field (as opposed to an external applied electric field in the
case of electroosmosis), we cannot have a net positive advection current alone. In such a case, the bulk
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conductivity of the aqueous solution offers a path for an induced back-current known as the conduction
current, which is nothing but the induced electric field times the conductivity of the aqueous electrolyte
solution. As a matter of fact, the sum total of both these currents must be identically zero owing to the
fact that there is no external electric field present to drive any currents - this constraint is often referred
to as electroneutrality of current; violation of the current electroneutrality would imply presence of
electric currents without any applied electric field, and thus, is physically implausible [15-16]. We note
that the magnitude of the conduction current is not independent of the streaming current; rather, it is
generated in a feedback-like system based on the ‘input’ streaming current. If there is a large pressure
gradient driving the flow, the larger advection of ions lead to a high advective or streaming current.
Now, the electroneutrality of current constraint dictates that the conduction current must balance this
streaming current, i.e. the conduction current is equal in magnitude but opposite in direction to the
streaming current. Thus, for a fixed bulk conductivity, we would expect a higher induced electric field
for a larger streaming current, implying that the conduction current varies with the nature of the
streaming current. Notably, at equilibrium when there is no flow, there is no streaming current and
hence no conduction current.  

Apart from the streaming current, there exists an electromigration (or a conduction) current through
the bulk of the fluid. This current explicitly depends on the magnitude of the induced electric field
through an Ohm’s law-like description of the current [15-16]. The downstream advection of the net
positive solution leads to a net positive charge accumulation downstream leading to an electric field
pointing downstream to upstream. This induced field tends to push the net positive solution in the
direction opposite to that of the pressure driven flow resulting in lower observed flow rate, equivalently
described by means of an enhanced viscosity. The quantification of the induced electric field by
appropriate balances of the steady state zero net current is the second part of the analysis described in
this paper.

It is clear that the induced electric field occurs in pressure driven aqueous solutions over a charged
substrate. The flow is retarded due to the aforementioned consequences and one must, eventually, apply
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Figure 1. Schematic of the flow of an aqueous electrolyte in a channel with negatively charged
walls. Near the wall, the EDL tends to contain excessive positive ions. The pressure driven flow
causes a fluid flow from the left to the right. The current due to downstream advection is the
streaming current while the current due to the conduction in the bulk is the conduction current
which is caused due to an electric field acting from right to left in this case. Owing to the excess
positive ions near the wall, the effect of the electric field is to push them towards the left, as
obvious by the back flow close to the wall.



a larger pressure gradient to obtain the same volumetric flow rate. Regardless, it is an indicator of
geophysical pressure changes (typical porous rocks have surface charges) [17], thought to be one of the
mechanisms of mechanotransduction in bones [18], an implicit method of evaluating the surface
potential (from flow measurements) [19-22] and lastly it provides a mechanism for converting the
mechanical energy (utilized for pumping) into electrical energy [23-24]. Such a mechanism is known
as electrokinetic energy conversion (EKEC) and has been a topic of much research in recent times from
both a theoretical and experimental perspective. In this paper, the last discussion pertains to the various
aspects of the maximization of the EKEC efficiency (which is typically low ~ 2-8%). 

The paper is organised as follows - the structure of the EDL is first discussed from a free energy
consideration; the modified Cauchy’s momentum equation is then solved to obtain the velocity field in
terms of the unknown electric field; the unknown electric field is then obtained by means of current
electroneutrality for a closure of the problem. Lastly, strategies for improving electrokinetic conversion
efficiencies are discussed.

2. MATHEMATICAL FORMULATION
2.1. Electrical Double Layer
The most central aspect to all electrokinetic phenomena is the presence of a mobile electrically charged
phase between the substrate and the aqueous solution. From a surface chemistry perspective, the
chemical state of an ionizable solid surface in contact with an electrolyte solution may get altered due
to various mechanisms; common mechanisms being ion adsorption or surface group ionization [15,16].
Such a pH dependent process therefore leads to the generation of a surface charge. For e.g. common
glass (Si-OH) in contact with water (H2O) acquires a negative charge due to formation of SiO- at the
surface at the cost of releasing a proton into the solution [15,16]. Quite intuitively, the ions from the
aqueous solutions are either repelled (coions) from the surface or the ions are attracted towards the
surface (counterions). The primitive description of ions at the charged interface predicts that the
counterions are molecularly ‘stacked’ at the wall which leads to a perfect sheilding of the charged
substrate. However, it is now well known that the equilibrium description of the coions and counterions
is only possible by duly accounting for the thermal agitation of the ions (random thermal motion of the
ions). Such an interaction of the Couloumbic attraction and thermal motion predicts, instead of a perfect
shielding, a distribution of coions and counterions in the vicinity of the charged substrate as seen from
Fig. 2 [16].
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Figure 2: Charge distribution and potential distribution within the EDL. The characteristic length
over which the potential decays to ζ/exp(1) is denoted by κ-1. The potential decays linearly from
the bare charged surface to the value at the shear plane within the Stern layer. Beyond this, the
potential decays with an exponential trend to the value in the bulk.
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The excess counterions form an immobile layer adjacent to the surface known as the Stern layer or
the Helmholtz layer. The thickness of the Stern layer is in the order of the ionic diameter (few
Angstroms). The electric potential at this plane is termed as Stern potential. The charge and the
potential distributions within this layer are strong functions of the geometrical characteristics of the
ions and the short range interaction forces between the ions, wall and the adjacent dipoles. From the
Helmholtz layer to the electrically neutral bulk solution, the net charge density gradually decreases to
zero. Beyond the Stern layer, the mobile layer consisting of both the coions and counterions is known
as diffuse layer or Gouy-Chapman layer. The plane separating the Stern layer and diffuse layer is
known as the shear plane and the potential at this plane is known as the zeta potential (ζ). The Stern
layer and the diffuse layer together form the electric double layer (EDL), which act as a screening layer
over the surface in such a way that the wall charge effect is not felt beyond it. 

We focus on two main parameters involved in the charge distribution are Debye length and the zeta
potential. We briefly remark over other parameters affecting the distribution of the EDL. The
characteristic thickness of the EDL is known as Debye length, which is the length from the shear plane
over which the EDL potential value becomes (1/e) of the value of zeta potential. The Debye length is
in the order of a few nanometers, sometimes even a micron depending on the ionic concentration of the
solution.

2.2. Poisson equation for charge density within the EDL
The total charge density (ρe,total) within the EDL consists of bound charges (ρe,bound) and free charges
(ρe,free). The corresponding electric field (E) within the EDL is given by the Gauss’ law (net electric
flux = total enclosed charge) as,

(1)

where ε0 is the permittivity of free space, S is the surface area vector of the control volume having a
volume V. Applying the divergence theorem to convert surface integral to volume integral and using
ρe,total = ρe,bound + ρe,free [25], one may rewrite the equation as:

(2)

Since the elementary control volume is arbitrary, considering the notation ρe,free ≡ ρe, equating the
integrand of both sides, the equation gives

(3)

In terms of polarization density vector, the bound charge density can be written as[25]

(4)

where P denotes the polarization density vector, which is the dipole moment per unit volume that
originates due to gradients in local dipole densities of the medium. Under the approximation that it
varies linearly with the electric field, P can be written as [25]

(5)

where χS = ε– r – 1 is the susceptibility of the medium and ε– r is the dielectric constant of the medium.

P ES0ε χ=

ρ = −∇•Pe bound,

E( ) e bound e0 ,iε ρ ρ∇ = +

∫ ∫ε ρ ρ( )( )∇• = +dV dVE
V

e bound e free
V

0 , ,

∫ ∫ε ρ• =d dVE S
S

e total
V

0 ,
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Then the equation (3) can be written in the form

(6)

Expressing the electric field E in terms of a EDL potential ψ as E = –∇ψ and substituting in equation
(6), one can gets

(7)

where ε = ε0ε
–

r. Equation (7) is known as the Poisson Equation for potential distribution within the
electric double layer.

2.3. Boltzmann equation for ionic distribution within the EDL
We consider a single plate or surface in an infinite liquid phase. For the system to be in equilibrium,
the electrochemical potential (µ– i) of the ions need to be constant everywhere, which implies

(8)

where the subscript ‘i’ indicates type  i ions. µ– i can be expressed as the sum of chemical potential (µi)
and the electric potential (zieψ), which gives

(9)

where zi is the valence of  type -i ion and e is the electronic charge. The chemical potential can be
expressed (from thermodynamic considerations) by considering an ideal solution of ions, as

(10)

where µ0
i is a constant for type-i ion, kB is the Boltzmann constant, T is the absolute temperature of the

solution and ni is the number concentration of the type-i ion. From equation (8) to (10), one may get

(11)

Integrating equation (11) with pertinent boundary conditions, the ionic number density distribution can
be obtained. Considering that as y → ∞, ψ = 0 and ni = n0 (the number density tends to a bulk number
density n0 at infinity), equation (11) gives

(12)

Equation (12) is known as Boltzmann distribution of ionic species near a charged surface. The important
assumptions made for the derivation of this distribution are: (i) ions are uncorrelated point charges, (ii)
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the system is in equilibrium, with no macroscopic advection or diffusion of ions, (iii) the solid surface
is microscopically homogeneous, (iv) the charged surface is in contact with an infinitely large liquid
medium, (v) the strength (intensity) of the EDL field significantly overweighs the strength of any
imposed electric field, close to the interface, and (vi) far stream boundary condition is applicable. In
practice the validity of some of these assumptions may indeed be questionable, in a strict sense. For
instance one may consider the case of ionic charge distribution in presence of fluid flows, for which the
system is not in thermodynamic equilibrium. However, for low flow velocities (Re ~ O(1)), the
Boltzmann distribution give a reasonably good approximation of ionic charge distribution [26].

2.4. THE POISSON-BOLTZMANN EQUATION AND ITS LIMITATIONS
For a binary electrolyte of valence z± and ionic number densities n±, the total charge density within the
EDL is given by

(13)

By the help of equations (12) and (13), and considering a symmetric electrolyte, equation (7) may be
simplified as

(14)

Equation (14) is known as Poisson-Boltzmann equation for potential distribution inside the EDL. This
equation has its own set of limitations, especially when the surfaces under consideration constitute too
narrow a fluid passage (<50 nm) within which distinctive intermolecular and surface interactions take
place [26-27]. In the diffused EDL, the mobile counterions form a highly polarizable layer at each
interface. For small distances (typically <4 nm) between these two interfaces, an attractive van der
Waals force or an ion correlation force is experienced by these two opposing ‘conducting’ layers. This
force may have significant contribution in describing Poisson-Boltzmann equation. The osmotic
pressure of a van der Waals gas increases due to the finite size of the gas molecules. In a similar fashion,
the finite size of coions and counterions (steric effect) tends to enhance the repulsive force between the
two surfaces. If the coions are adsorbed into the surface, this repulsion is nothing but the steric
repulsion between the overlapping Stern layers. Moreover, the interaction between ionic charge and the
surface occurs due to the reflected field of that polarized surface. This reflected field is the same as if
there were an image charge on the other side of the surface at the same distance. If the permittivity of
the aqueous medium is less than the permittivity of the surface, an additional repulsive force will occur
due to this image charge interaction. If the distance between two surfaces comes closer than a few
nanometers, some short-range forces (oscillatory solvation force, monotonic solvation force) become
important in describing the EDL theory. The short-range oscillatory solvation force of geometric origin
arises if the liquid molecules are induced to order into highly restricted spaces or in quasi-discrete
layers between two surfaces. The monotonic solvation force arises in surface-solvent interactions which
induces an orientational reordering in the adjacent liquid. This force usually decays exponentially with
the surface separation. These forces depend on the physical and geometrical properties of the surface
and are not considered in the description of continuum-level EDL theories. Also implicit in the
calculations is that the permittivity remains spatially constant. However, for polar solvents like water,
the preferential orientation leads to significant dipolar orientation near the wall and thus a sharp drop
in the permittivity near the wall. Recent works have attempted to quantify such effects on electrokinetic
transport.

To describe the most fundamental limitation of the Poisson-Boltzmann equation in a more precise
way, one may consider the finite sized effect of the ions in the EDL potential distribution [28-31]. In
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such cases, the Boltzmann distribution for ionic species is modified by a factor which quantifies the
amount of steric repulsion. Within the mean field approximation, the total free energy of the system can
be written as, ∑ = U – TS, where U is the electrostatic energy and TS is the entropic contribution to the
free energy. In terms of the electrostatic potential the free energy, ∑, may be expressed as [28-31]

(15)

where b is an ion specific length scale. In case of a symmetric z:z electrolyte, the ionic concentration
distributions may be obtained by minimizing the free energy with respect to ψ and n±. The variation of

(15) with respect to ψ, i.e., leads to the Poisson equation

(16)

Whereas, the minimization with respect to n±, i.e., (please note that the δ operator is the

variational derivative), assuming that the electrochemical potential of each type of ions is constant in
the system [28], gives the modified Boltzmann distributions for ionic species which are given by

(17)

where υ = 2n0b
3, is the steric or size factor and b signifies the size of the solute ions or the solvation

radius(taken to be same for all types of ions for simplicity). One must note here that, the hydraulic
radius of the particle (ionic length scale) is different from the solvation radius[60]. Equations  (16) and
(17) together give

(18)

Equation (18) is essentially the modified form of the Poisson-Boltzmann equation considering finite
size effects of ions, under the mean-field approximation that neglects any correlation between them.

2.5. Fluid flow equations
We reiterate that electric fields can drive flows owing to the electrical body force which is the product
of the applied electric field and the charge density. In a similar fashion, the induced electric field also
has a net contribution towards the body force which needs to be accounted while describing the fluid
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flow. It is clear that the velocity field is needed in order to estimate the advective current flux. At the
same time, the complete description of the velocity field necessitates knowledge of the magnitude of
the induced electric field which, as we had discussed earlier, can be found out by enforcing current
neutrality. The description of the fluid flow is achieved through the continuity equation and momentum
equation with an additional electrical body force which are given by

(19)

(20)

is the material derivative, u is the velocity vector, ρf is the fluid density, p is hydrostatic

pressure, is the deviatoric stress tensor, η is the dynamic viscosity, FEK is the

electrokinetic body force and is given by [16]

(21)

where ρe is the total electric charge density, E is the electric field. The consideration of
incompressibility and constant permittivity of the medium reduces the above body force to FEK = ρeE.
For steady state, low Reynolds number flow of Newtonian fluids with constant fluid properties, the
above equations (19) and (20) can be written in a more simplistic manner as

(22)

(23)

These equations may be solved with proper boundary conditions to obtain the velocity profile. In
equation (23) the electric field E refers to an externally applied electric field or an induced streaming
field. Here we will mainly focus on the latter case. After obtaining the velocity field, one may calculate
the ionic current (iion), for a binary electrolyte, as [32]

, (24)

where z+ (z–), u+ (u–) and n+ (n–) refers to the valence, axial velocity and ionic concentration (number
densities) of the cations (anions) respectively. The axial velocities u± can be expressed as

(here u is the contribution from the fluidic transport and remaining part is the

electromigration of the ionic species), f± is the ionic friction coefficient and ES is the induced electric
field. For a symmetric electrolyte (z+ = –z– = z) and equal cationic and anionic friction coefficients
(f+ = f– = f), the ionic concentration equals to [32]
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(25)

The ionic friction coefficient f can be related to the ionic mobility Λ, Faraday’s constant F and

Avogadro number NA as .

A primitive approach is to neglect the contribution of the body force towards evaluation of the
velocity field - an approximation which holds true in the case of very weak electric fields[21-22,33-35].
Such an approximation implies that the electric field does not alter the flow. This assumption leads to
a straight-forward calculation for the streaming potential which is outlined hereafter. If a pressure
difference ∆p is applied across a channel of length L and cross-sectional area A to drive the ionic liquid

of bulk conductivity σb and permittivity ε (= ε0 ε– r), the total streaming current and

conduction current , where ∆φ is the potential difference between the two electrodes.

So, the amount of streaming potential (∆φ) generated across the channel is given by [35]

(26)

where ζ is the zeta potential at the surface. The treatment made so far is well regarded as Helmholtz-
Smoluchowski theory for electrokinetics [35]. However, a major fault in this assumption is that the flow
rate does not get altered in the presence of the electric field. From experimental findings, it has been
observed that there is distinct flow retardation in the channel due to the induced electric field [34-55].
This is manifested in experiments as a lower flow rate and can be thought of as an enhanced viscosity
- this phenomenon is termed as electroviscous effect [49]. The theoretical framework considering
complete electro-hydrodynamic equations are initially proposed by Burgreen and Nakache [41] for
rectangular geometry and is later extended to cylindrical capillary by Rice and Whitehead [42]. On the
basis of these works, other studies have made significant improvements towards exploring the
underlying physics of electro-hydrodynamics which involves various effects such as, high surface
potential, strong EDL interaction [43-55], surface conductivity [35,56-58], steric repulsion [28,59-60],
viscoelectric effect, form of driving field [61-64], fluid rheology [65-66], channel geometry [67-70],
surface properties [71-105] (includes electro-chemical properties as well as hydrodynamic properties
such as hydrophobocity), etc. In the subsequent sections, we will address some of the issues through a
simple mathematical formalism. Mainly, we have discussed the streaming potential phenomenon in slit
like micro and nanochannels [32, 41, 106-110]. A similar methodology can be followed for other cross-
sectional geometries like circular, elliptic, trapezoidal, etc [67-70]. 

For demonstration of the underlying calculations, let us consider a steady state pressure-driven flow
of an ionic liquid, presumably a Newtonian fluid, in a slit micro or nano-channel of height 2H, whose
centre is located at the midplane. The fluidic velocity u can be obtained by simplifying equations (22),
(23) for low Re and unidirectional flow and is given by

(27)

where is the applied pressure gradient and ES represents the streaming potential yet to be known.dp
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The velocity distribution is obtained from an emphasis that, although this is a pure pressure driven
transport, the back electroosmotic flow due the induced streaming potential field has enough
contribution on the overall flow field. The boundary conditions imposed here are no-slip condition

(u(±H) = 0) at the channel wall and flow symmetry at the channel central line ( ). It is also

to be noted here that, in conjunction with the boundary condition for the velocity, the condition on the
potential distribution is also required to complete the profile. Although the specified zeta potential (ζ)
is considered in most cases, it often appears to be ill conditioned because of its variation with the salt
and pH condition of the solution. Moreover, the zeta potential is merely a hypothetical entity.
Alternatively, one may use the surface charge (σ) as a possible boundary condition. In this case the

boundary condition reads . In addition, the surface charge can be relate with the zeta

potential by the expression [13]

The total ionic current for a binary electrolyte is given by [32] (please also refer to equation 25)

(28)

According to the electronuetrality constraint the total ionic current is zero (Iion = 0). Under the
consideration for the Poisson-Boltzmann equation (14) for EDL potential distribution, equation (28)
with Iion = 0 gives an estimation for ES as,

(29)

Because of this streaming potential field, an electroosmotic flow will be created in the direction
opposite to the imposed pressure driven flow. As a result the actual flow slows down, which may be
understood grossly in terms of the fluid flowing with a higher viscosity which resemblance the
electroviscous effect as mentioned earlier. If the reduced flow rate is compared with the flow rate
predicted by conventional fluid dynamics (without considering the electrokinetic effects), it appears
that the fluid would have an enhanced effective viscosity (ηeff). To quantify this effect, one may
consider a pure pressure driven flow with the effective viscosity, which produces same net volumetric
flow rate as that of the combined pressure-driven and back electroosmotic flow due to the streaming
effect. Mathematically, this can be given as 
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which implies

(30)

We note that for ES = 0, we have no enhanced electroviscous effects while for a non-zero ES, we get a
higher effective viscosity.

2.6. Effect of surface conductivity
The above methodology neglects the effect of surface conduction and the EDL polarization [35, 56-58].
Surface conduction refers to the additional mode of current conduction apart from the conduction
through the aqueous solution. A modification has been made to equation (25) by considering the surface
conduction which is quantified by the Dukhin number (Du), and is given in the weak field limit as[35]

(31)

where, Du is the ratio between the surface conductivity (or the Stern layer conductivity) and the surface
equivalent bulk ionic conductivity and � is a factor depending upon the confinement geometry (� = 2,
for cylindrical capillary). A more detailed description about the dependence of surface conduction can
be found in the IUPAC report of Delgado et.al. [35].

In conjunction with the theoretical formalism as described in equation (28) and (29), on accounting
the effect of Stern layer conductivity, σstern, the total ionic current (28) will be enhanced by the Stern
layer conduction current Istern = σsternES, and is given by

(32)

Accordingly, the streaming potential can be modified as 

(33)
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(34)

2.6. Steric effects - finite size effects
The above calculations for streaming potential are free from the ionic size effects. To consider this
effect, the streaming current and the conduction current is rewritten with the help of modified
Boltzmann distribution (17), and is given by [59-60, 66]

(35)

(36)

The total ionic current (Iion) is given by

(37)

So, the streaming potential field can be evaluated from equation (37) by equating the total ionic current
to be zero and is given by [32]

(38)
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2.8. Electrokinetic energy conversion (EKEC)
The most important technological relevance of generating streaming potential is the development of
energy conversion device in which a hydrostatic energy is converted into electric power [23-24, 111-
130]. At the open circuit conditions described above, we have the streaming electric field given by ES
while the current in a short-circuit mode would be essentially the streaming current Istream. However,
when there is an external load applied to the circuit, we can only draw a fraction of the streaming
current and streaming electric field. The consideration of a linear load line dictates the operation zone
and the current and potential at that operation zone. In the case where the external load is equal to the
resistance of the aqueous solution, we obtain the maximum power which is equal to half of the open
circuit voltage times the half of the short circuit current. So if we consider the half voltage and half

current line, the power generated will be proportional to . The concept of the operation

zone dictates that in the presence of an externally connected resistor, the potential-current
characteristics follow that of a straight line. When the external resistor is highly conducting, the current
flowing through it is the short circuit current. On the other hand, when the external resistance is very
high, the potential drop across it is the open circuit voltage. For any other values, the current and
potential lie between a straight line joining the two extreme operating conditions (for an equivalent
circuit representation, please refer to Fig. 2 of [111]). 

Theoretically, efficiency is measured by the ratio of electric power (product of streaming current and

the streaming potential, i.e., ) to the hydrostatic energy (product of applied pressure

gradient and volume flow rate, i.e., )[127-130]. Therefore, the efficiency, γ, may be given as

(39)

Quite obviously, we can have a larger EKEC efficiency if we can somehow obtain a higher
streaming current or a higher streaming electric field at the means of a lower pressure gradient. In the
case of surface treated nano- and microchannels, the physical considerations may deviate from the
classical paradigm of the no-slip boundary condition and the fluid may effectively slip at the wall. The
common intuition would be that the pressure gradient to drive the same volume flow rate would reduce.
However, we note that owing to the feedback-like evaluation of the streaming potential, we have a
scenario where the flow rate would tend to increase in the presence of slip for a given pressure gradient.
This increased flow rate would lead to an increased streaming current which would thus imply a
stronger induced streaming field. This augmented streaming electric field would lead to a larger
retardation on the flow rate, thereby essentially modulating the flow rate. It is observed that the flow
rate retardation and consequently the streaming current retardation is overwhelmed by the increase in
the induced electric field. Given the proximity of the effects of the EDL near the wall, any alteration of
the velocity profile is expected to drastically influence the electrokinetics.

To quantify the effect of hydrodynamic slip, the usual no-slip boundary condition for obtaining
velocity profile (27) is replaced with Navier-slip boundary condition which may be stated as

[100, 131-132], where lslip represents the slip length which is a hypothetical distance

beyond the surface where the velocity extrapolates to zero. The inclusion of this slip condition
reformulates the velocity profile (27) as
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(40)

This velocity profile changes the streaming potential field (38) to [133-135]

(41)

Accordingly, one can find the streaming current Istream from equation (35) and consequently the
conversion efficiency from equation (39). Not only the fluid slip but the steric effect, surface
conduction, fluid rheology, may also have considerable effect [136-140] on determining EKEC,
predicting enhanced efficiencies to the tune of 25-30%. 

3. CONCLUSIONS
The detailed steps described in this paper on quantifying streaming potential are expected to be the
basic building blocks towards addressing more complicated issues of streaming potential calculations
in a variety of situations. Complications arising out of stick-slip motion, effects of the wettability of the
substrate, utility of streaming potential for mixing of solutes and so on are various issues which still
require substantial experimentation as well as theoretical probing. Theoretical understanding of the
various issues involved in evaluating streaming potential, however, need to be significantly advanced
for acting as a robust design tool for the development of more efficient energy harvesting devices.
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