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ABSTRACT
The Euler equations are solved on unstructured triangular meshes for hypersonic flow
over double-wedge geometries. The driving algorithm is an upwind biased cell centered
finite volume method. AUSM+ method is used to split the fluxes. Edney (1968) studied
the shock interactions by impinging an externally generated planar oblique shock on the
bow shock generated by a cylinder. Depending upon the parametric conditions Edney
classified the shock interactions in different types. Two interaction topologies, namely
Type-VI and Type-V and the transition from Type-VI to Type-V are studied in details.
Both six-shock and seven-shock configurations of Type-V interaction are presented.
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1. INTRODUCTION
When a shock wave propagating in a medium with given acoustic impedance obliquely encounters to
another medium with different acoustic impedance, a reflection occurs. In the subject of shock wave
reflection shock-shock interactions are very important phenomena. Shock- shock  interaction
phenomenon  has  been  studied  experimentally  by  Edney  [1],  where  an externally generated planar
oblique shock impinged on a bow shock generated by a cylinder and the two shocks interacted.
Depending upon the parametric conditions, the shock interactions are classified into different types.
The study has effectively shown the transition between regular and Mach reflection (RR and MR) and
hysteresis phenomena in between RR ↔ MR. Different types of shock-shock interactions and transition
from one type to the other in flow, especially,  over double-wedge like geometries have been discussed
in details.

Two types of shock reflections RR and MR normally occurs in steady flows as indicated by Ben- Dor
[2]. If the angle of incidence (φ1) is sufficiently small that the streamline deflection angle (q1) caused
by the incident shock can be cancelled by the opposite deflection angle (q2) caused by the reflected
shock, RR occurs. The condition for the RR is q1 – q2 = 0. In the case of MR, if the streamline deflection
angle across the Mach stem is q3, the condition for MR is q1 – q2 = q3 since the streamlines in both side
of the slipstream must be parallel. On the basis of two extreme angles of incidence, namely the von
Neumann angle (fN

1) and detachment angle (fD
1),  the transition RR ↔ MR has been explained.

Theoretically, for φ1 > fD
1 , RR wave configuration is not possible, similarly for φ1 < fN

1, MR wave
configuration is not possible. In the range fN

1 ≤ φ1 ≤ fD
1 both RR and MR wave configurations are

theoretically possible and the range is known as dual-solution domain.



For asymmetric shock wave reflections, the overall RR wave configuration consists of two incident
(i1, i2) and two reflected shock (r1, r2) waves and one slip stream. The slip  stream is created due to
the  streamlines  passing  through  two  shocks  of  unequal  strength.  The  flow deflection angles are
q1, q2, q3 and q4 as the flow passes through i1, i2, r1, and r2 respectively. The condition for RR in
asymmetric case is q1 – q3 = q2 – q4 = d. The value of d is 0 for symmetric reflection. For MR
configuration, in  addition  to the above incident and reflected shock waves, a Mach stem appears and
it bridges two triple points and is complemented by two slipstreams.  The  conditions  for  MR  are
q1 – q3 = d1 and q2 – q4 = d2. For  a  symmetric case, q1 = q2 and d1 = d2. Analytical  and  experimental
investigations  of  asymmetric  shock wave reflections in steady flows have been performed by Li et al.
[3]. It has been shown that a hysteresis exists in the RR → MR → RR transition process. Three
dimensional edge effects are found  responsible  for  hysteresis.  A numerical  investigation  on  the
asymmetric  shock  wave reflection has also been carried out by Ivanov et al. [4] and more recently a
theoretical study on RR → MR transition of asymmetric shock waves in steady flows has been reported
by Hu et al. [5].

In most realistic supersonic flow situations the shock-shock interactions are usually asymmetric.
External flows over double-wedge like geometries fall in this category. Olezniczak et al. [6] have
numerically studied inviscid shock-shock interactions on double-wedge geometries using structured
mesh. Different type of shock interactions have been observed by varying the second wedge angle
while keeping the first wedge angle and the ratio of the face lengths fixed. Ben-Dor et al. [7] have
reported self-induced oscillations in the shock wave flow pattern formed in a stationary supersonic flow
at Mach number 9 over double-wedge geometry. In their numerical investigations, self-induced
oscillations and a hysteresis exist within the second wedge angle range from 41.80 to 43.00, keeping the
first wedge angle and other parameters fixed.

Upwinding is the most preferred numerical scheme for high-speed flow simulation. Upwind
schemes  are  usually  categorized  as  either  Flux  Difference  Splitting  (FDS)  or  Flux  Vector
Splitting (FVS). The most successful and popular approximate Riemann solver (FDS) is Roe’s method,
which is the exact solution of a linearized Riemann problem (Roe [8]). It is able to capture stationary
discontinuities with no numerical dissipation. However, at strong expansions, the Roe scheme tends to
diverge even if the entropy fix is applied. In addition, FDS scheme suffers from the so called “carbuncle
phenomenon” – a numerical instability in capturing strong shock waves in multidimensional
computations.

Other way of introducing upwind is FVS, in which the numerical flux function is divided into
positive and negative parts. Steger and Warming [9] made use of similarity transformations and the
homogeneity property of the Euler equation, in splitting the flux depending on the sign of the
eigenvalues of the flux Jacobian matrix.  However, this splitting has problem around the sonic point,
and van Leer [10] proposed an alternative splitting, which gives noticeably better results.

These FVS schemes share a serious disadvantage: large dissipation on contact discontinuities and
shear layers.

A more recent effort to develop less-dissipative upwind schemes focuses on reducing the surplus
dissipation of the FVS by introducing the flavor of FDS into FVS schemes. Liou and Steffen [11]
proposed  a  promising  scheme  named  Advection  Upstream  Splitting  Method  (AUSM) (Fezoui and
Stroufflet [12]) in which the cell-face advection Mach number is appropriately defined to determine the
upwind extrapolation for the convective quantities. The AUSM + (Liou [13]) is designed to be a further
improvement of AUSM, and offers further improvement in accuracy over its predecessor (AUSM) and
other popular schemes, simplicity, and easy generalization to other conservation laws.

The desire to compute flows over complex geometrical body, the widely used multi-block structured
grid approach can be used. But the automation of the blocking and grid generation process is difficult
tasks that are continually being refined. The unstructured grid can be used for this kind of problem as
well as simple geometrical problem (Venkatakrishnan [14]; Bertolazzi and Manzini [15]; Batina [16];
Jameson and Mavriplis [17]).
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In the present study the two-dimensional Euler equations are solved on unstructured triangular
meshes to study the shock interactions in high Mach number flow over double-wedge excluding the
self-induced oscillations regime (Ben-Dor et al. [7]) in the shock wave flow pattern. The driving
algorithm is an upwind biased cell-cantered finite volume method. The spatial discretization involves
a naturally dissipative flux-split approach that sharply captures shockwaves.

1.1 Statement of the Problem
The hypersonic flow over double-wedge geometry is schematically shown in the Figure 1. Considering
a calorically perfect diatomic gas, the ratio of specific heats (g) is fixed at 1.4. The free stream Mach
number (M∞) is taken as 9.0. The ratio of the first face length to the second face length (L1/L2) is kept
at 1. The first wedge angle (q1) is taken 15°.  Keeping  all these parameters fixed, the second wedge
angle (q2) is gradually increased from 35° to 45° to explore the  two-dimensional M, q2, parameter
space  with  regard  to  shock  interactions.  The  shock interactions are presented in order of occurrence
with increase in the second wedge angle. Since, the problem is symmetric, only half of the flow field,
with respect to the symmetric line marked in figure 1, is taken as the computational domain. In the
present calculations, free stream values for density, pressure and velocity are assigned as the initial
values to each triangular cell in the domain. The free stream flow conditions are selected as P∞ = 170
Pa and r∞ = 0.002 Kg/m3.

Figure 1. Flow geometry.
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2. FORMULATIONS AND NUMERICAL METHODS
2.1 Solution of the two dimensional governing equations
In the present study, the flow is assumed to be governed by the two-dimensional Euler equations where
the variables to be determined are the density, Cartesian velocity components, pressure and total energy
per unit volume, denoted respectively by r , u, v, p and e. The two dimensional Euler equations in
integral form can be written as follows:

(1) 

where the vector of conserved variables Q, inviscid flux vectors F, G are given below,

(2) 

and the pressure p is given by the equation of state for a perfect gas, namely

(3) 

In equation (1), Ω denotes the domain of computation that is bounded by ∂Ω, nx and ny are the x- and
y- components  of  the  outward  unit  normal  to  the  differential  surface dS. The integrand namely
inviscid fluxes of mass,  momentum  and  energy  of  a  control volume can be rewritten as,

(4) 

where, Vn = unx + vny is the convective velocity normal to the face.

The semi-discretized form of the equation (1) over a control volume (CV) containing ‘Nedge’ number
of edges can be written as,

(5) 

where Aj is the area of control volume (CV number ‘j’). The subscript ‘m’ indicates the local face
number of CV numbered j. The maximum number of edge of the CV is indicated by ‘Nedge’. The
inviscid flux vector is computed using the AUSM+ flux-vector splitting with MUSCL-type upwind-
biased interpolation scheme.
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2.2 AUSM+ flux splitting
The AUSM + is a hybrid method of spatial discretization. In this method flux vectors are split into
forward and backward contributions, which are continuously differentiable even at sonic and stagnation
points. As a first step in formulation of the  AUSM + method, the convection and acoustic  waves  are
recognized  as  two  physically  distinct  processes.  The  flux  (Fed) at  the interface of two neighbor
cells (edge) is written as a sum of the numerical convective flux and the numerical pressure flux.

(6) 

where, 

(7) 

aed is  an  interface  numerical  speed  of  sound  and h = e + p. aed is  determined  using  an arithmetic
average of left (l) and right (r) states as

(8) 

(9) 

The interface Mach number aed, is written as sum of two individual components,

(10) 

The “+” and “-” are understood to be associated with the right and left-running waves. Here, Ml and Mr
are determined as,

(11) 

The split Mach numbers (M±) are defined as,

(12) 

with

(13) 

The interface pressure is written as

(14) 
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where the split pressures are given by

(15) 

with

(16) 

Full upwinding of both pressure and Mach number is achieved for supersonic flow; whereas a
polynomial blending of upstream and downstream contributions are obtained for subsonic flow. The
numerical flux normal to a cell interface is obtained by assembling the two contributions as,

(17) 

The fluxes are evaluated by MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws)
type reconstruction of the primitive variables q at the cell faces.

2.3 Flux computation on unstructured grid
A cell centered scheme is adopted where the flow variables are stored at the centroid of each triangle
and the control volume is the triangle itself. The scheme is derived as follows.

Figure 2. Directed edge and velocity components normal and along the edge.

The flux across a face is obtained as Fed ∆S = F∆y – G∆x. For each edge of a given triangle, the fluxes
are first rotated into a locally Cartesian co-ordinate system x– and y– with the principal direction being
perpendicular to the edge as shown in figure 2. The flux in this direction is defined as

(18) 

where T is the transformation matrix, ∆x and ∆y are the directed lengths of the edge  and ∆S2 = ∆x2+ ∆y2.
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Here, u– and v– are the velocity components perpendicular and parallel to the edge and are given by,

(19) 

The flux vector H is split in a one-dimensional fashion into forward (H+) and backward (H–)
components by using the AUSM+ flux splitting method. The resulting split fluxes are  finally rotated
back into the original coordinate system, so that

(20) 

To increase the order of spatial accuracy a MUSCL-type approach is used to interpolate the variables at
the edges.

For a triangle j0 (centroid at j0) the upwind biased interpolation for q– along the edge e1 delimiting
the triangles j0,  j1 is defined by,

(21) 

where, 

qj0 and qj1 are the vectors of primitive variables at the centrods j0 and j1 respectively and qi3 is the
vector of primitive variables at node i3, the third vertex of the  CV. The upwind biased interpolation for
q+ is also obtained in a similar fashion by considering flow variables at the two centroids (j0 and j1)
and node i4, the third vertex  of  the element whose centroid is j1. The parameter k is  the controlling
factor that  gives  rise  to  different  schemes  by  appropriately weighting d– and d+. The value of k is
taken 1⁄3 which leads to a third order accurate upwind- biased scheme for one-dimensional
computations. The formulae for d– and d+ are modified to account for the distances from the midpoint
of the directed edge to the centroids of the delimiting triangles to weight the flow variables
appropriately. To control the numerical oscillations in the regions of high gradients (e.g., at shocks),
usually associated with upwind-biased schemes, the min-mod limiter is used.

2.6 Temporal discretization
The time integration is performed by approximating the time derivative as,

(22) 

where, ∆Q = Qn+1 – Qn.  The  parameter j controls  the  order  of  temporal  accuracy.  In  the present
calculation j is taken to be 1 which gives a second order accuracy in time.

The local time step for each cell in the mesh is calculated using the following relationship,

(23) 
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where, ∆Smin is the characteristic length scale of the cell, taken as the minimum face length of the
triangular element. The minimum of all the local time steps is selected as ∆t. An appropriate choice of
the CFL number is used to ensure stability. The triangles of the unstructured mesh are recorded in a
particular fashion from upstream to downstream and the solution is obtained by sweeping from
upstream to downstream.

2.7 Boundary conditions
The  flow  tangency  condition  on  the  wall  is  imposed  using  dummy  cells.  The  velocity components
within a dummy cell are determined from the values in the cell adjacent to the boundary surface such
that the normal component is zero on the surface. The velocity in the dummy cell is given by

(24) 

The values of density and pressure in a dummy cell are set equal to the respective values at the adjacent cell.
A characteristic based analysis using the fixed and extrapolated Riemann invariants is implemented

to calculate the values of the flow variables in a cell on the outer boundary. For supersonic inflow or
outflow, the locally one-dimensional Riemann invariants and entropy, i.e.

(25) 

are  computed  respectively  from  outside  or  inside  the  computational  region.  For  subsonic inflow
R1 and R3 are given from outside and R2 from inside and for subsonic outflow R2 and R3 are calculated
from inside and R1 from outside.

3 RESULTS AND DISCUSSION
Type-VI and Type-V shock interactions in flow over double-wedge configuration at free stream Mach
number 9 is studied here. The air is considered a perfect gas with g = 1.4. The ratio of the wedge face
lengths (L2/L1) and the first wedge angle (q1) are respectively kept fixed at 1.0 and 150. The second
wedge angle q2 is varied within the range of 350 to 450. The different  flow topologies and
characteristics of shock-shock interactions are presented in order of occurrence as q2 increases.  The
discussion  is  split  into  two  subsections  –  Type-VI  and  Type-V shock interactions. The constituent
elements of the structure of the Type-VI and Type-V are discussed in details. All linear dimensions are
normalized with the first wedge length (L), the horizontal component of the face length. Local
refinement is used near the wedge surface  and corner to resolve the large and rapid changes in the flow
properties in these regions.

3.1 Type-VI interactions
With  fixed  free  stream  conditions  and  other  parameters  (g, q1 and L2/L1),  the  interactions topology
of the two leading shock waves generated from the two leading edges of the double- wedge geometry
solely depends on the difference of the two wedge angles (∆q = q2 – q1). With relatively small ∆q the
interaction of the two leading shock waves of the same family belongs to Type-VI interaction. The
Type-VI wave configuration is schematically shown in figure 3. The flow field consists of two
incoming shock waves (IS1 and IS2) created from the leading edges and two outgoing waves separated
by a contact discontinuity or slip line (Cd).
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Figure 3. Schematic diagram of a Type-VI shock interaction.

These two incoming waves, two outgoing waves and the slip line meet at a single interaction point
named as triple point (T). The outgoing waves consist of a transmitted shock wave (OS) and an extra
wave (ES) which reflects from the second wedge surface. This extra wave is normally an expansion
wave but for some cases it might be a shock wave depending upon the flow conditions and first wedge
angle. The contact discontinuity separates the fluid that has passed through both the incoming shock
waves (IS1 and IS2) from the fluid that only passed through the transmitted shock wave (OS). For
shock interaction Type-VI, one of the major criteria is that the total flow field is supersonic. For
completeness of understanding, a schematic diagram of the shock polar for Type-VI interaction in a
hypersonic flow with M∞ = 9, q1 = 150 and q2 = 350 is shown in figure 4.

Figure 4. Shock polar diagram for a Type-VI shock interaction with q1 = 15° and q2 =35°

About the interaction point (T in figure 3), the overall flow field is divided into five regions marked
as (1), (2), (3), (4) and (∞) by five discontinuities and the regions are marked in the schematic
diagram (figure 3) and shock polar (figure 4). Since the flow after an oblique shock is parallel to the
wedge surface, Point 1 for region (1) and Point 2 for region (2) in the shock polar diagram are located
at q = –150 and q = –350 (using Edney’s angle convention) respectively. The location of Point 1 on the

Pabitra Halder, Kalyan P. Sinhamahapatra and Navtej Singh 233

Volume 1 · Number 4 · 2010



shock polar diagram is on the free stream Mach number 9. With the fixed pressure ratio, the Mach
number (M) at region (1) is uniquely determined and the value is 5.04. The polar for region 1 is now
drawn from Point 1. The Point 2 is located on the shock polar of M = 5.04 at q = –350. The locations
of Points 3 and 4 can be determined in the shock polar diagram by gas dynamic consideration. The
Point 4 must  lie on the M = 9 polar. Since regions (3) and (4) are separated by only a contact
discontinuity; Point 3 also lies at the same location of Point 4. In between the regions (2) and (3), there
is a Prandtl-Meyer expansion fan. The Points 3 and 4 lie on the intersection of the isentropic expansion
path originated from Point 2 and the M = 9 polar (qip). The summery of shock location points in the
shock polar diagram is shown in Table 1.

Table 1. Shock polar locations for different wave configurations

Points in Shock Polar Regions in Wave Configuration qq,M
1 (1) -15, 9.0
2 (2) -35, 5.04

3, 4 (3), (4) qip , 9.0  

The exploded view of the mesh near the corner of the double-wedge is shown in figure 5. The grid
contains 113049 nodes and 225134 triangular elements. The grid spacing in this problem introduces  a
very  critical  length  scale  that  determines  the  capturing  of  the  shock-shock interaction.
Consequently, a very fine mesh surrounding the triple point is required. This is achieved with the help
of local refinement at and about the corner point and triple point. With the help of local refinement of
an unstructured grid, the shock-shock interactions are captured accurately with considerably less
number of cells (unknown variables). In this respect, the unstructured Euler solver is very convenient
compared to any structured solver where multi- block grid structure with very high level of refinement
is obvious. For solving this particular problem Olejniczak et al. [6] used grid sizes of 1024 × 1024
points while many features in some of the interactions were lost in a 512 × 512 mesh.  However, almost
similar accuracy is obtained here with a mesh that contains only about 20% unknowns.

Figure 5. Exploded view of the mesh near the corner.
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Figures 6a-c show the wave configurations for Type-VI shock interactions. The Mach contours
presented  in  figure  6b  clearly  show  that  the  whole  flow  field  is  supersonic.  A contact
discontinuity is distinctly seen in the Mach contours and density contours. It is clear from the figure 6b,
that the flow velocity below the contact discontinuity (region 3) is higher than the velocity above the
contact discontinuity (region 4). On the other hand figure 6a shows that the pressure in regions above
and below the slip line (contact discontinuity) is continuous. An expansion fan is also created from the
intersection point of two shocks and is reflected back from the surface of the second wedge and slightly
deflects when it passes through the contact discontinuity. This is visible in the pressure contours (figure
6a). The normalized pressure jump through  the  first  oblique  shock  (IS1)  is  found  to  be  11.18,
which  matches  well  with  the theoretical value of 11.2. For the second oblique shock (IS2) the
computed pressure jump is 80.17.  In  the  contact  discontinuity  regions  (3)  and  (4),  the  value  is
found  47.2.  Some discrepancies with the theoretical value have been found in this region due to the
presence of the expansion waves.

Figure 6 (Continued)
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Figure 6. The contours of (a) Pressure, (b) Mach number and (c) Density for a Type-VI
interaction with q2 = 350.

Figure 7. (a) Pressure contours, and (b) Mach number contours for a Type-VI interaction
with q2 = 350. (Olejniczak et al., [6]).

The pressure and Mach number contours for the same flow configuration as given by Olejniczak et al.
[6] are reproduced in figure 7. The two results are found to match quite closely. The computed
normalized surface pressure for a Type-VI interaction is shown in the figure 8. The maximum
normalized surface pressure on the first wedge is found 11.2 due to the oblique shock generated at the
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nose of the first wedge. The peak in the computed surface pressure, at a pressure ratio of about 90, is
due to the second oblique shock generated from the corner of the double- wedge at q2 = 350.

Figure 8. Surface pressure for a Type-VI interactions with q2 = 350.

In the shock polar (figure 4) the Points 3 and 4 lie below the sonic point of the free stream polar. Now,
at fixed first wedge angle q1 = 150), if the second wedge angle q2 increases, the Point 2 moves up and
left on the shock polar diagram. As a result, above certain q2, the  expansion wave originating from
Point 2 intersects the free stream polar above its sonic  point and the purely supersonic Type-VI
interaction can no longer exist. This is the  transition  criteria from Type-VI to Type-V. The transition
process from Type-VI to Type-V interaction occurring over a small change of q2 has been shown with
the help of contours of pressure and Mach number in figures  9,  10  and  11.  The  results  are  shown
over  a  small  range  of  second  wedge  angles (39.50, 40.00 and 41.00) where the transition is found
to  occur. At the second wedge angle of 39.50, there is still pure supersonic flow which is clear from the
contours of Mach number (figure 9b). The maximum normalized pressure shown in contours of
pressure is below 110 which is one of the criteria for Type-VI shock interactions at Mach 9.
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(a)  Contours of pressure (b)  Contours of Mach number

Figure 9. Contours of pressure and Mach number at q2 = 39.50.

(a)  Contours of pressure (b)  Contours of Mach number

Figure 10. Contours of pressure and Mach number at q2 = 40.00.



When q2 is increased to 400, the corresponding Mach contours, shown in figure 10b,  clearly reveals
the appearance of a very small subsonic zone (just below Mach 1.0). From the contours of pressure
(figure 10a), the maximum normalized pressure is seen to be higher than 110. Thus, at q2 = 400, the
shock interaction does not belong to Type-VI interaction. The transition occurs in between 39.50 and
40.00 of the second wedge angle. This transition q2 has been predicted by Olejniczak et al. [6] to be
39.760 . It can be fairly concluded that present numerical  scheme correctly predicts the transition in
shock interaction.  By keeping all the parameters same, the second wedge angle is now increased to
410. The contours of pressure and Mach number (figures 11a-b) show a shock interaction of Type-V. A
large subsonic zone near the triple point is visible in figure 11b and the maximum normalized pressure
is about 210 as shown in figure 11a. The details of Type-V shock interaction and its development are
discussed in the next subsection.

3.2 Type-V interactions
With a given first wedge angle q1, above a certain value of second wedge angle q2 (as discussed in the
previous section), the interaction undergoes a change in pattern, i.e., Type-VI to Type-V. The key
feature in a Type-V interaction is that there must be subsonic zones after the reflection of  two  oblique
shock  waves  of  opposite  families.  The  Type-V shock  interaction  normally consists of either a six-
shock structure or a seven-shock structure. When the second wedge angle q2 is little higher than the
Type-VI to Type-V transitional value the six-shock Type-V interaction occurs.   This   six-shock   type
interaction   normally   occurs   with   a   steady   regular   wave configuration. As the second wedge
angle q2 further increases the flow topology changes from six-shock to seven-shock Type-V interaction
with Mach reflection (MR) configuration. The flow features of these two structures of Type-V are
explained with the help of schematic diagrams. Two-possible flow topologies (six-shock and seven-
shock Type-V) with complete notations for the major elements of the shock interaction structures are
shown in  figure 12a-b. Figure 12a illustrates the six-shock Type-V interaction. It is composed of one
triple-shock sub-structure and a regular interaction sub-structure denoted by Tu and Ip respectively.
The triple-shock structure contains three shock waves denoted by IS1 (created  from first wedge leading
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Figure 11. Contours of pressure and Mach number at q2 = 41.00.



edge), the bow shock wave OSB and MWS (Mach stem), and a contact discontinuity denoted by Cd1
emitted from Tu. In the regular interaction substructure,  four shock waves denoted by IS2 (generated
from the leading edge of the second wedge), MWS, SW1 (meets Cd1) and SW2 (reflected shock wave
from the second wedge surface) meet at a point (Ip). An expansion fan (generated from the meeting
point of SW1 and Cd1) is also shown in the schematic diagram. The different zones are indicated by
(∞), (1), (2), (3), (4), (5) and (6) respectively.

Figure 12. Schematic diagram for the Type-V shock-shock interaction and notations used
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The detail of a typical seven-shock structure is shown in figure 12b. Instead of the single triple shock
structure in a six-shock configuration, it contains three triple shock structures denoted by Tu (Upper
triple point), Tm (intermediate triple point) and Tl  (lower triple point). Each of these triple points
contains three shock waves and a contact discontinuity as shown in the schematic diagram. In the
seven-shock Type-V interaction, there are two Mach stems denoted by MWU (connected to Tu and Tm)
and MWL (connected to Tm and Tl). The contact discontinuity surfaces are marked as Cd1 (generated
from Tu), Cd2 (generated from Tm) and Cd3 (generated from Tl). The important flow zones are
indicated in the schematic diagrams.

Using the same free stream flow conditions and the first wedge angle (q1 = 150), a six-shock
structured Type-V interaction has been obtained at q2 = 41.50 . The  computational results are shown in
figure 13a-b. The flow zones and the interacting shock  structure depicted in the schematic diagram are
clearly seen in the computed contour diagrams. Downstream of the Mach stem (MWS) a small
supersonic zone (3) is present, which is separated by a contact discontinuity (Cd1) from a large subsonic
zone (4) between OSB and Cd1. A very small subsonic pocket (6) is visible in the downstream of the
shock (SW2) reflection point on the second wedge surface (Rp). It is shown in the enlarged view in the
lower right corner of figure 13b. The shock wave SW1 meets the contact discontinuity and the
interaction causes a series of expansion waves to emit from the point, which reaches the surface of the
second wedge (visible in the contours of pressure in figure 13a). As a result the subsonic flow behind
SW2 matches with the downstream supersonic flow. Consequently, it can be said that a convergent-
divergent stream tube (subsonic- sonic-supersonic) is formed between the contact discontinuity and
second wedge surface. The contours of pressure (figure 13a) show that the maximum normalized
pressure for this six-shock Type-V interaction is about 500 in the zone (6), 0.103L away from the corner.

Figure 14a-b illustrates the seven-shock Type-V interaction. The numerical results are obtained with
the second wedge angle increased to 450. The contours of Mach number in figure 14b show a region
bounded by the two contact discontinuities (Cd1 and Cd2 according to the schematic diagram 12b)
created from the upper and intermediate triple points (Tu and Tm). This region actually carries jet like
properties, so it is termed a jet. Similarly, a convergent-divergent nozzle type flow behavior is visible
in the Mach number and pressure contours behind the lower Mach stem (MWL). Behind the MWL and
bounded by the two contact discontinuities (Cd2 and Cd3), a large subsonic zone is visible in the
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(a)  Contours of pressure (b)  Contours of Mach number

Figure 13. Contours of pressure and Mach number at q2 = 41.50.



contours of Mach number. When the flow moves downstream within this two contact discontinuities,
it gradually becomes supersonic to match with the outflow. As a result, a subsonic-supersonic transition
process takes place and the region is termed as convergent-divergent nozzle whose throat is actually the
sonic line in Mach number contours and the two contact discontinuity lines are the two blades of that
convergent-divergent nozzle. The contours of pressure near the second wedge surface show a series of
alternating isentropic expansion and compression waves. Similar flow feature normally occurs in an
underexpanded jet. The numerical normalized pressures, 11.18 in the region (1) and 144.30 in the
region (2) agree well with the analytical results.

Figure 15. Normalized surface pressure for a seven-shock Type-V interactions with q2 = 450.
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(a)  Contours of pressure (b)  Contours of Mach number

Figure 14. Contours of pressure and Mach number at q2 = 450.



The normalized pressure in all the regions are given in the following table,

Table 2. Computed pressure in different zones in seven-shock Type-V interaction

Region 1 Region 2 Region 3 Region 4 Region5 Region 6 Region 7 Region 8
11.18 144.30 101.50 101.50 358.50 195.20 344.50 650.40  

The maximum peak pressure occurs just behind the reflection point of the shock SW2 on the second
wedge surface (Rp). The numerical result shows large and rapid variation in the steady- state pressure
over the second wedge surface. It is one of the major criteria of Type-IV shock- shock interaction
according to Edney’s classification. This phenomenon indicates that the interaction is approaching
towards the transition from Type-V to Type-IV interaction.

The normalized surface pressure is shown in figure 15. The numerical results show that the
maximum surface pressure is around 690. Large changes in quick succession ahead and behind the
highest peak is also visible in the surface pressure plot. The first pressure peak occurs due to the shock
from the leading edge of the second wedge. This value is 147.2 (shown in the figure 15). Very near to
this peak, one more peak occurs just before the highest peak. This peak attains a value of 230. Small
amplitude oscillations are observed between the second and the highest peaks.

4 CONCLUSIONS
With the min-mod limiter the code has been able to capture the complex shock-shock interaction
patterns quite efficiently. However, it is observed that the oscillations are not adequately controlled
when large changes occur successively. Grid plays an important role in this particular gas dynamic
problem. It is essential to use properly refined mesh in the shock interaction region near the corner of
the double-wedge.   The interaction occurs within a very small region; as a result the grid spacing
introduces a length scale that determines the resolution required to capture different shock patterns. In
this respect, the developed unstructured Euler solver is robust and efficient  enough  to  resolve  the
present  shock  interaction  problems  with  comparatively  less number of triangular elements. All the
simulations in this work are carried out on a mesh with around 0.225 million elements which is about
20% of the structured mesh (1024 × 1024) used by Olejniczak et al. [6]) for solving the same problem.

Two interaction topologies, namely Type-VI and Type-V and the transition from Type-VI to Type-
V are discussed in details. Both six-shock and seven-shock configurations of Type-V interaction are
presented. The computed values of normalized pressure in the two regions (1) and (2) for all the cases
match reasonably well with the theoretical values. The values of computed normalized pressure for
other regions are reasonably good when compared to shock jump relationship. The transition from
Type-VI to Type-V occurs when the second wedge angle is between 39.50 and 40.00. This matches well
with the previously calculated value of 39.760 (Olejniczak et al. [6]). The different flow topologies and
sub-structures of the six-shock and seven-shock types are analyzed in details with the help of numerical
results and schematic diagrams.
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