STEREOSELECTIVE SYNTHESIS OF 4(5)-[(2S,3S)- AND (2R,3R)-3-AMINOTETRAHYDROFURAN-2-YL)IMIDAZOLES USING MODIFIED AND STANDARD MITSUNOBU CYCLIZATIONS: SYNTHETIC STUDIES TOWARD NOVEL HISTAMINE H_3-LIGANDS

Shinya Harusawa, Ikuno Ijichi, Lisa Araki, and Takushi Kurihara*
Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan

Abstract - 4(5)-[(2S,3S)-3-Aminotetrahydrofuran-2-yl)imidazole [(+)-3] and its enantiomer [(-)-(2R,3R)-3] were stereoselectivity synthesized by using both modified and standard Mitsunobu cyclizations from L- and D-methionine, respectively.

INTRODUCTION

The histamine H_3 (H_3) receptors exist on histaminergic fibers in the brain and modulate the synthesis and release of histamine as an autoreceptor. Moreover, H_3-receptors have been shown to be heteroreceptors which modulate the release of a number of different neurotransmitters. This type of receptor can be also found in many peripheral tissues. The H_3-agonists are regarded as a target for new therapeutics of bronchial asthma, and H_3-antagonists are now expected to be potential drugs for memory degenerative disorders like Alzheimer’s disease. We recently reported (+)-4(5)-[(2R,5R)-5-(aminomethyl)tetrahydrofuran-2-yl]imidazole (imifuramine, 1) as a new type of H_3-agonist, whose activity measured by in vivo brain microdialysis was approximately equal to that of the current H_3-agonist, immepip. Imifuramine, to the contrary, exhibited weak H_3-agonistic activity in an in vitro test using guinea pig ileum preparation. Arrang et al. have been reported cyclopropylhistamine (2) as a H_3-agonist in a patent application. However, the stereochemical identity of the material tested was not reported.
Recently, two groups11,12 independently reported the synthesis and evaluation of the H\textsubscript{3}-agonistic activity of trans-cyclopropylhistamine. Khan \textit{et al.}11 determined that the trans-(1R,2R)-isomer was 1 order of magnitude more active than the (1S,2S)-isomer. Contrary to the results reported, Timmerman \textit{et al.}12 concluded that the trans-(1S,2S)-isomer was about 10 times more active than its enantiomer. From these results, we envisioned that either 4(5)-[(2S,3S)-3-aminotetrahydrofuran-2-yl]imidazole [S,S-THF-histamine, (+)-3] or its enantiomer [(-)-3] might show H\textsubscript{3}-agonistic activity. Further, they may be used as a base compound for synthetic study toward novel H\textsubscript{3}-antagonists by introduction of a hydrophobic group into the amino group of 3, since the present H\textsubscript{3}-antagonists exhibit three common and essential structural features: an imidazole headgroup, a spacer and a hydrophobic tail group.4 We report herein an efficient and stereoselective synthesis of the novel trans-THF-histamines [(+)-3 and (-)-3] using modified and standard Mitsunobu cyclization.

RESULTS AND DISCUSSION

We very recently reported13 that the modified Mitsunobu cyclization14 of a 1:1 diastereomeric mixture (4RS) having an unsubstituted imidazole, using \textit{N,N,N',N'}-tetramethylazodicarboxamide (TMAD)15 and Bu\textsubscript{3}P, stereoselectively afforded α-L-arabinofuranosynucleosides (5), in which the benzyloxy group at the C2'-position acted as the directing group to control thermodynamically the stereochemistry of imidazole C-nucleosides (Scheme 1). Importantly, the unsubstituted imidazole moiety was indispensable for the exclusive formation of the α-anomer. We thus expected that an unsubstituted imidazole (10) having a
The dibenzylamino group at the C2'-position would form a 1', 2'-trans-THF derivative (13) (Scheme 2). (S)-N,N-Dibenzylhomoserine lactone (6) was easily synthesized from (S)-methionine as described by Sendzik et al.16 Reduction of 6 with DIBAL-H followed by an addition of the lithium salt (8) of bis-protected imidazole to the resulting lactol (7) gave only a diol [(-)-9 (70 %), mp 132 - 133.5 °C] as a single isomer with C1'S configuration. The configuration at C-1' of 9 was assigned by the relatively large \(J_{1',2'} \) coupling constant (5.1 Hz) in \(^1\text{H}-\text{NMR} \), based on an analogy of our previous reports.6,13,14 The formation of C-1', 2'-anti-configurated compound (9) can be assumed by the Felkin-Anh model as illustrated in Figure 2, in which a conformer, with the dibenzylamino group in the position of the largest substituent,17 governs the addition of 8 and, hence, leads to the anti-adduct. Deprotection of 9 in HCl-THF at room temperature afforded a diol (10) in 85 % yield. The modified Mitsunobu cyclization of 10 using TMAD and Bu₃P at room temperature in benzene followed by N-Boc-protection for the ease of isolation, as expected, produced only a trans-THF derivative [(+)-14] in 85% overall yield from 10. The trans-selectivity in this reaction may be explained as follows. Preferential elimination of Bu₃P=O from 11 leads to an active form (12) of the imidazole ring. This exclusively supplies the trans-isomer (13) via a rotomer (12') which is thermodynamically more stable. Thus, the trans-stereoselectivity of 13 may be facilitated by a stereoelectronic repulsion in 12. Removal of the Boc group of 14 with HCl and subsequent Pd-catalyzed hydrogenolysis of the resulting dihydrochloride (13·2HCl) yielded the trans-THF-histamine [(+)-3] in 95% overall yield from 14. The correctness of the stereochemical assignment was confirmed by \(^1\text{H} \text{COSY and NOESY experiments of a cyanoguanidine (15) derived from 3, as illustrated in Scheme 3.}
Reagents and conditions: a) ref. 16; b) DIBAL, -70°C, 20 min; (i) 8, -50°C; (ii) rt, 1 h; d) 1N HCl, rt, 38 h; e) TMAD, Bu3P, benzene-THF, rt, 17 h; f) Boc2O, THF, rt, 26 h; g) 1N HCl, EtOH, rt, 0.5 h; h) (i) H2/10% Pd-C (3 Kg/cm2) (ii) column chromatography (CHCl3:MeOH:30% NH4OH = 20:10:1)
Yokoyama *et al.*\(^{18}\) had reported the synthesis of C-ribonucleosides having typical aromatic heterocycles, in which the cyclization of the corresponding diols proceeds through an intramolecular Sn2 reaction under standard Mitsunobu conditions (DEAD, Ph\(_3\)P), and the orientation of the glycosidic linkage is controlled by the C1’ configuration of the substrate: one isomer affords an α-anomer and the other, a β-anomer. Therefore, we anticipated the formation of a *cis*-THF derivative from 9 by the Sn2 reaction *via* the C1’-oxyphosphonium intermediate. However, cyclization of 9 with TMAD and Bu\(_3\)P at room temperature in benzene produced the *trans*-17 in quantitative yield (Scheme 4). This fact indicates that 17 arises from the formation of an oxyphosphonium intermediate (16) at the less hindered C-4’ hydroxy group. Deprotection of 17 thus obtained followed by removal of the N-dibenzyl group also completed the synthesis of (+)-3 in a shorter route. Accordingly, the modified and standard Mitsunobu cyclizations produced the respective *trans*-THF-intermediates (13 and 17), but they proceeded by different reaction mechanisms. It is important to note that simply switching the starting material to *d*-methionine allows the synthesis of the enantiomer [(-)-(2R,3R)-3]. We thus achieved an efficient and stereoselective synthesis of (+)-3 and (-)-3 *via* two routes. The biological evaluation of THF-histamines and their related derivatives is under way in our laboratories.

Scheme 4

\[
\begin{align*}
\text{(-)-9} & \quad \text{a) TMAD, Bu_3P, benzene, rt, 47 h} \quad \text{b) 1N HCl, THF, reflux, 1 h} \quad \text{c) (i) 1N HCl, EtOH, rt, 0.5 h; (ii) H_2 / 10% Pd-C (3 kg/cm^2), 20 h; (iii) column chromatography (CHCl_3 : MeOH : 30% NH_4OH = 20:10:1)} \\
16 & \quad - \text{Bu_3P = O} \quad 17 \text{(quant)} \quad (+)-3 \text{(76 %)}
\end{align*}
\]
EXPERIMENTAL

The melting points were determined on a hot-stage apparatus and are uncorrected. Optical rotations measurements were recorded with a JASCO DIP-1000 digital polarimeter. \(^1\)H- and \(^{13}\)C-NMR spectra were taken with tetramethylsilane as an internal standard on a Varian Gemini-200, Varian Mercury-300, and Varian UNITY INOVA-500 spectrometers. Reactions with air- and moisture-sensitive compounds were carried out under an argon atmosphere. Unless otherwise noted, all extracts were dried over Na$_2$SO$_4$, and the solvent was removed in a rotary evaporator under reduced pressure. THF was distilled from sodium-benzophenone.

2-tert-Butyldimethylsilyl-5-[(1S, 2S)-2-dibenzylamino-1,4-dihydroxybutyl]-N, N-dimethylimidazole-1-sulfonamide [(−)-9].

To a solution of 6\(^{16}\)(1.40 g, 5 mmol) in dry toluene (18 mL) at -70 °C was added a 1 M solution of DIBAL in toluene (5.2 mL, 5.2 mmol) over 5 min. After being stirred for 15 min at -70 °C, the reaction mixture was quenched with MeOH (1 mL) and further stirred at rt. Saturated NaHCO$_3$ solution (2 mL) was then added to the reaction mixture with stirring. After anhydrous MgSO$_4$ was added to the resulting suspension, the reaction mixture was stirred for a while, filtered through a Celite pad, and washed with EtOAc. The solvent was evaporated to give crude lactol (7) (1.40 g) as a white solid. The \(^1\)H-NMR spectrum of 7 indicated a 1:2 epimeric mixture [e.g., (CDCl$_3$): 5.34 (br s, 1/3H, 2-H), 5.54 (br s, 2/3H, 2-H)]. Next, a solution of 2-tert-butyldimethylsilyl-N,N-dimethyl-1H-imidazole- sulfonamide (2.88 g, 9.97 mmol) in THF (5 mL) was cooled to -50 °C, and 1.6 M BuLi-hexane (6.23 mL, 9.97 mmol) was added dropwise over 5 min to the solution to precipitate the white lithium salt (8). The resulting suspension was cooled to -60 °C, and a solution of 7 in toluene (15 mL) was added slowly at the same temperature. The dry ice bath was removed, and the reaction mixture was stirred at rt to dissolve the salts. After 1 h, the resulting solution was diluted with hexane-EtOAc (2:1), and the solution was washed with H$_2$O, dried, and evaporated to give a crude oil. The residue was purified by column chromatography to give (−)-9 (2.00 g,
70 %) as a solid using a gradient solvent system [2:1 to 1:3 in hexane-EtOAc]. (-)\(-9\): recrystallized from hexane-benzene to give colorless needles. mp 132-133.5 °C, [\(\alpha\)]\sub{D} \(-52.7°\) (c=1.35, CHCl\(_3\)). \(^1\)H-NMR (CDCl\(_3\)): 0.40 (s, 3H, SiCH\(_3\)), 0.42 (s, 3H, SiCH\(_3\)), 1.03 [s, 9H, C(CH\(_3\))\(_3\)], 1.73-1.85 (m, 1H, 3'-H), 2.13-2.32 (m, 1H, 3'-H), 2.84 [s, 6H, N(CH\(_3\))\(_2\)], 3.06-3.26 (2H, br, OH \(\sim\)), 3.29 (dt, 1H, \(J = 6.6, 4.9\) Hz, 2'-H), 3.52 (d, 2H, \(J = 13.0\) Hz, CH\(_2\)Ph), 3.74 (br s, 2H, 3'-H), 3.78 (d, 2H, \(J = 13.0\) Hz, CH\(_2\)Ph). Anal. Calcd for C\(_{29}\)H\(_{44}\)N\(_4\)O\(_4\)Si: C, 60.80; H, 7.74; N, 9.78. Found: C, 60.78; H, 7.73; N, 9.74.

\(4(5)\)-[\((1S,2S)\)-2-Dibenzylamino-1,4-dihydroxybutyl]imidazole (10)

A solution of \(9\) (814 mg, 1.423 mmol) in THF (50 mL) and 1.5 N HCl (10 mL) was stirred at rt. After 15 h, as deprotection of the imidazole moiety was incomplete from TLC, 1.5 N HCl (10 mL) was further added to the reaction mixture, and then the whole was further stirred for 23 h. After neutralization by addition of NaHCO\(_3\) powder, the mixture was extracted with EtOAc (\(\sim\)4). The extract was dried and evaporated to give an oil, which was subjected to flash chromatography. Elution with EtOAc followed by MeOH-EtOAc (1:19) afforded \(10\) (422 mg, 85 %) as a white amorphous product. \(^1\)H-NMR (CD\(_3\)OD): 1.75-1.90 (m, 1H, 3'-H), 2.05-2.20 (m, 1H, 3'-H), 3.02 (m, 1H, 2'-H), 3.5-3.8 (br m, 2H, 4'-H), 3.63 (d, 1H, \(J = 12.0\) Hz, CH\(_2\)Ph), 3.82 (d, 1H, \(J = 12.0\) Hz, CH\(_2\)Ph), 5.09 (d, \(J = 6.0\) Hz, 1'-H), 6.82 [s, 1H, 4(5)-H], 7.18-7.39 (br m, 10H, Ph \(\sim\)), 7.65 (s, 1H, 2-H). \(^{13}\)C-NMR (CD\(_3\)OD): 29.9, 55.3, 62.0, 62.6, 67.8, 118.3, 127.8, 129.0, 130.0, 135.5, 141.1. EIMS \(m/z\): 352 (M\(^+\)+1). HRMS \(m/z\): 352.2022 (Calcd for C\(_{21}\)H\(_{26}\)N\(_3\)O\(_2\): 352.2024).

Conversion of \(10\) into (+)-14 using the modified Mitsunobu cyclization

To a solution of \(10\) (417 mg, 1.19 mmol) and Bu\(_3\)P (362 mg, 1.79 mmol) in benzene (25 mL) was added TMAD (308 mg, 1.79 mmol) at rt. THF (10 mL) was added to the reaction mixture which was stirred at rt for 17 h. The insoluble material was filtered through a Celite pad, and the filtrate was condensed. The resulting crude oil was diluted with EtOAc, and the organic layer was washed with 5% HCl (\(\sim\)3). The
collected aqueous layer was neutralized with NaHCO₃ powder and extracted with EtOAc (3). The extract was dried, and evaporated to give an oil, which was subjected to chromatography. Elution with gradient solvent [EtOAc to MeOH-EtOAc (1:19)] gave 13 (407 mg) containing a small amount of Bu₃P=O. The THF solution (5 mL) of 13 was stirred with Boc₂O (397 mg, 1.82 mmol) at rt for 26 h. The solvent was removed to give a residual oil, purification of which by column chromatography using EtOAc–hexane (3:7) as eluent gave (+)-tert-butyl 4-[(2S,3S)-3-dibenzylaminotetrahydrofuran-2-yl]imidazole-1-carboxylate¹⁹ [(+)-14, 440 mg, 85% from 10] as a colorless oil. (+)-14: [α]D +50.2° (c=3.32, CHCl₃). IR (neat) cm⁻¹: 1753 (NCOO). ¹H-NMR (CDCl₃) δ: 1.63 [s, 9H, C(CH₃)₃], 2.11 (q, 2H, J = 7.3 Hz, 4'-H), 3.63 (d, 2H, J = 14.6 Hz, CH₂Ph), 3.76 (d, 2H, J = 14.6 Hz, CH₂Ph), 3.79 (1H, q, J = 8.1 Hz, 3'-H), 4.01 (td, 2H, J = 7.3, 2.3 Hz, 5'-H), 4.92 (d, 1H, J = 5.8 Hz, 2'H), 7.12 (s, 1H, 5-H), 7.16-7.39 (m, 10H, Ph), 8.00 (s, 1H, 2-H).

(+)-4(5)-[(2S,3S)-3-Aminotetrahydrofuran-2-yl]imidazole [(+)-3]

A solution of (+)-14 (395 mg, 0.91 mmol) in EtOH (30 mL) was stirred with 1N HCl (3 mL) at rt for 0.5 h, and evaporated to give a 13·2HCl (365 mg, 99%) as a white amorphous material. 13·2HCl: ¹H-NMR (CDCl₃) δ: 2.65 (m, 1H, 4'-H), 2.83 (m, 1H, 4'H), 3.92 (t, 1H, J = 8.4 Hz, 3'-H), 4.1-4.5 (m, 2H, 5'-H), 6.05 (s, 1H, 2'-H), 7.3-7.5 [br, 6H, Ph and (4)5-H], 7.5-7.7 (br, 5H, Ph), 9.00 (s, 1H, 2-H). A solution of 13·2HCl (365 mg, 0.91 mmol) in EtOH (35 mL) was subsequently hydrogenated with 10% Pd-C (108 mg) at initial pressure of 3.0 kg/cm² for 20 h. The catalyst was removed by filtration through a Celite pad, and the filtrate was concentrated to give (+)-3·2HCl [198 mg, 96 % from (+)-14] as anamorphous product. (+)-3·2HCl: [α]D +32.5° (c=1.1, MeOH). ¹H-NMR (CD₂OD) δ: 2.1-2.3 (m, 1H, 4'-H), 2.4-2.7 (m, 1H, 4'-H), 4.0-4.3 (m, 3H, 2'-H, 5'-H), 5.20 (d, 1H, J = 6.7 Hz, 2'-H), 7.74 (s, 1H, 5-H), 9.00 (s, 1H, 2-H). EIMS m/z: 153 (M⁺). HRMS m/z: 153.0896 (Calc for C₇H₁₁N₃O: 153.0901).

To a MeOH solution of (+)-3·2HCl thus obtained was added a small amount of Chromatorex NH-DM 1020. The solvent was evaporated to give a coated silica gel, which was subsequently placed in a column
Chromatography using CHCl₃-MeOH-30% NH₄OH (20:10:1) as the eluent gave (+)-3 (quant.) as free form. (+)-3: colorless oil. [α]D +69.5° (c=2.23, MeOH). ¹H-NMR (CD₃OD) δ: 1.8-1.9 (m, 1H, 4'H), 2.3-2.4 (m, 1H, 4'H), 3.59 (dd, 1H, J = 12.1, 7.6 Hz, 3'H), 4.0-4.1 (m, 2H, 5'H), 4.53 (d, J = 5.3 Hz, 2'-H), 7.07 (s, 1H, 5-H), 7.67 (s, 1H, 2-H). ¹³C-NMR (CD₃OD) δ: 35.5, 58.1, 68.0, 83.2, 118.1, 137.2. EIMS m/z: 153 (M⁺). HRMS m/z: 153.0896 (Calcd for C₇H₁₁N₃O: 153.0901).

Conversion of (-)-9 into (+)-3 Using the standard Mitsunobu Cyclization.

To a solution of (-)-9 (487 mg, 0.85 mmol) and Bu₃P (0.32 mL, 1.28 mmol) in benzene (45 mL) was added TMAD (220 mg, 1.28 mmol) at 0 ºC and the whole was stirred at rt for 47 h. The resulting insoluble material was filtered through a Celite pad, washed with EtOAc and the filtrate was condensed. The residual oil was chromatographed [EtOAc-hexane (10% to 30%)] to give 2-tert-butyldimethylsilyl-5-[(2S,3S)-3-dibenzylaminotetrahydrofuran-2-yl]-N,N-dimethylimidazole-1-sulfonamide¹⁹ (17, 471 mg, quant.) as a colorless oil. ¹H-NMR (CDCl₃) δ: 0.40 (s, 3H, SiCH₃), 0.42 (s, 3H, SiCH₃), 1.04 [s, 9H, C(CH₃)₃], 2.0-2.2 (m, 2H, 4'-H), 2.87 [s, 6H, N(CH₃)₂], 3.5-4.0 (3H, m, 3' and 5'-H), 3.65 (s, 4H, CH₂Ph), 5.29 (d, 1H, J= 6.3 Hz, 1'-H), 6.81 (s, 1H, 5-H), 7.23 (br s, 10H, Ph), 7.61 (s, 1H, 2-H). A solution of 17 (336 mg, 0.61 mmol) in THF (30 mL) and 1N HCl (3 mL) was refluxed for 1 h and then cooled. After neutralization by addition of 30% NH₄OH, the solvent was evaporated to give a residue, which was extracted with EtOAc. The extract was washed with H₂O and brine, dried, and evaporated to give an oil, which was subjected to chromatography. Elution with EtOAc-hexane (50% to 100%) afforded 13 (154 mg, 76%). 13: ¹H-NMR (CDCl₃) δ: 2.10 (q, 2H, J = 7.2 Hz, 4'-H), 3.60 (d, 2H, J = 14.1 Hz, CH₂Ph), 3.75 (overlapped, 1H, 3'-H), 3.78 (d, 2H, J = 14.1 Hz, CH₂Ph), 3.91 (q, 1H, J = 8.1 Hz, 5'-H), 4.01 (dt, 1H, J = 8.1, 7.8 Hz, 5'-H), 4.97 (d, 1H, J = 6.6 Hz, 2'-H), 6.79 [s, 1H, 4(5)-H], 7.15-7.35 (br, 10H, Ph), 7.50 (s, 1H, 2-H). EIMS m/z: 333 (M⁺). HRMS m/z: 333.1846 (Calcd for C₂₁H₂₃N₃O: 333.1840). A solution of 13 (154 mg, 0.46 mmol) in EtOH (10 mL) was stirred with 1N HCl
(0.9 mL) at rt for 0.5 h, and evaporated to give a 13·2HCl (191 mg, quant) as a white amorphous material. The dihydrochloride was quantitatively converted into (+)-3 by the same procedure described above.

(-)-4(5)-[(2R, 3R)-3-Aminotetrahydrofuran-2-yl]imidazole [(-)-3]
The configuration counterpart {(-)-(2R,3R)-3, [α]D -69.9° (c=4.01, MeOH)} was synthesized from D-methionine by the present method.

1-Cyano-2-(p-chlorobenzyl)-3-{2-[1H-imidazol-4(5)-yl]-tetrahydrofuran-3-yl}guanidine [(+)-15]
A solution of (+)-3 (8 mg, 0.05 mmol) and dimethyl N-cyanodithioiminocarbonate (9 mg, 0.06 mmol) in MeOH (1.0 mL) was stirred overnight at rt for 19 h. After evaporation of the solvent, the residue was dissolved in a solution of p-chlorobenzylamine (0.007 mL, 0.06 mmol) in THF (2 mL) and the whole was refluxed for 48 h. The solvent was evaporated to give a residue, which was subsequently chromatographed [MeOH-AcOEt (3:7 to 1:1)] to give (+)-15 (11 mg, 65 %) as a pale yellow oil. [α]D +95.0° (c=2.73, MeOH), 1H-NMR (DMSO-d6) δ: 1.9-2.0 (m, 1H, 4'-H), 2.2-2.4 (m, 1H, 4'-H), 3.86 (t, 2H, J = 6.4 Hz, 5'-H), 4.32 (d, 2H, J = 3.7 Hz, CH2Ph), 4.3-4.4 (m, 1H, 3'-H), 4.66 (d, 1H, J = 5.9 Hz, 2'-H), 7.02 (s, 1H, 5-H), 7.21 (d, 2H, J = 8.3 Hz, Ar-H), 7.2-7.3 [overlapped, C2'-NH (indicated by D2O treatment, 1H-COSY and NOESY)], 7.36 (d, 2H, J = 3.7 Hz, Ar-H), 7.57 (s, 1H, 2-H), 8.16 (br, 1H, NH), 12.07 (br, 1H, NH). 13C-NMR (DMSO-d6) δ: 32.3, 43.5, 56.8, 66.0, 78.5, 117.5, 125.2, 127.8, 128.1, 128.8, 131.3, 135.1, 137.8, 159.0. EIMS m/z: 344 (M+). HRMS m/z: 344.1155 (Calcd for C16H17N6OCl: 344.1152).

ACKNOWLEDGEMENT
We are grateful to Prof. A. Yamatodani, Dr. Y. Yamamoto, and Mr. T. Hashimoto at School of Allied Health Science, Faculty of Medicine, Osaka University, for biological evaluation of related compounds. We thank Dr. Y. Sakamoto at R&D Division of AZWELL Inc. for encouraging us in this study. The
authors also thank Mr. K. Minoura of our university for the measurements of NMR spectra and his invaluable assistance. Financial support of this work by the Ministry of Education, Science, Sports and Culture of Japan [Grant No. 09877421 (S.H.) and 11672127 (T.K.)] and AZWELL Inc is gratefully acknowledged.

REFERENCES

19. The expected MS peaks were not obtained because of thermal instability.