SYNTHESIS OF (−)-IDIADIONE, A FURANOSESTERTERPENE ISOLATED FROM A MARINE SPONGE SPONGIA IDIA

Yoshihiro Noda* Hiroyuki Hashimoto and Toshie Norizuki

Department of Materials Chemistry and Engineering, College of Engineering, Nihon University, Tamura-machi, Koriyama, Fukushima, 963-8642 Japan

Abstract-(−)-Idiadione (1), a furanosesterterpene isolated from a marine sponge Spongia idia, was synthesized, starting from (S)-(−)-citronellal (2). The absolute configuration of naturally occurring 1 is established as (S).

The linear furanosesterterpene idiadione (1) was first isolated in 1980 by Faulkner et al.1 from a marine sponge Spongia idia (Leiosella idia). Faulkner reported that idiadione (1) is toxic to the sea star, brine shrimp and ectoproct. 1 has also antifeedant activity2 against fish. The structure of 1 has been elucidated by spectroscopic method and chemical degradation. Faulkner has also reported the isolation of a structure-related marine natural product, furospinulosin-1 (furospinosuline-13) (3), which was also isolated from the marine sponge Spongia idia. Idiadione (1) possesses one stereogenic carbon in a highly oxygenated furospinulosin-1(3) skeleton. No indication of the absolute configuration at the chiral center in 1 was mentioned by Faulkner.

We here describe the first enantioselective total synthesis of (S)-(−)-idiadione (1) using (S)-(−)-citronellal (2) as the starting material.

Scheme 2 shows retrosynthetic analysis for 1. The target compound (1) is divided into left-hand part A and right-hand part (perillene part) B.

To produce the left-hand part A of the target molecule, we protected (S)-(−)-citronellal by ethylene glycol
in the presence of a catalytic amount of p-toluenesulfonic acid in refluxing benzene and obtained the acetal (4). Oxidation of 4 with 70% t-BuOOH in the presence of SeO₂ in CH₂Cl₂ at room temperature, afforded a mixture of aldehyde and alcohol. Without purification, the mixture was reduced by NaBH₄ to the corresponding alcohol (5) (50%, three steps). Bromination of the alcohol (5) under the well-described conditions (tetrabromomethane / triphenylphosphine) afforded the bromide (6) in 82% yield. 2-Isobutyl-1,3-dithiane (7) was prepared from isovaleraldehyde and 1,3-propanedithiol in 70% yield. The bromide (6) was employed for the alkylation of 7 (n-BuLi / THF) to give 1,3-dioxolane (8) (75% yield), which was readily converted to 1,3-dithiane (9) by 1,3-propanedithiol and Zn(OTf)₂ in 77% yield.

Scheme 3. Reagents and conditions: (a) ethylene glycol, benzene, p-TsOH, reflux; (b) SeO₂, 70%-t-BuOOH, CH₂Cl₂, rt; (c) NaBH₄, MeOH, rt, 50% for three steps; (d) CBr₄, Ph₃P, THF, rt, 82%; (e) 2-isobutyl-1,3-dithiane (7), n-BuLi, (6), THF, -20°C, 75%; (f) 1,3-propanedithiol, Zn(OTf)₂, CH₂Cl₂, rt, 77%; (g) n-BuLi, propylene oxide, THF, -20°C, 58%; (h) TFAA, DMSO, Et₃N, CH₂Cl₂, -78°C, 82%; (i) Wittig reagent (13), THF, -30°C, 40%; (j) HgCl₂, CaCO₃, MeCN-H₂O, rt, 46%.
In the first attempt, alkylation of 9 with bromoperillene (10)\(^6\) (the right-hand part B) (n-BuLi / THF, -20°C) (LDA / THF, -78 to -30°C) was unsuccessful under these conditions.

We then turned our attention to another approach for the synthesis of idiadione (1). 1,3-Dithiane (9) was treated with n-BuLi and propylene oxide to give alcohol (11) (58% yield). The alcohol (11) was converted to the methyl ketone (12) by Swern oxidation\(^7\) (TFAA, DMSO, Et\(_3\)N in CH\(_2\)Cl\(_2\), 82% yield). We undertook coupling with the appropriate Wittig reagent (13).\(^8\) Treatment of the phosphonium salt with n-BuLi in THF led to the formation of a yellow solution of 13, which, upon addition of methyl ketone (12) at room temperature, furnished 40% yield of an inseparable mixture of the 6\(E\) and 6\(Z\) isomers of 14, 15 (ratio 6:1).\(^9\) Without purification, the mixture was hydrolyzed with HgCl\(_2\) in the presence of CaCO\(_3\) in aqueous MeCN.\(^10\) The hydrolyzed products can be separated by preparative TLC. The structural data of the major product (1) (46% yield) are in agreement with that of natural idiadione. Synthetic optically active 1 had identical specific rotation with that of natural 1 \{\([\alpha]_D^{21}\) -6.6° (c 0.26, CHCl\(_3\)) for synthetic, lit.\(^1\) \([\alpha]_D^{19}\)-6.6° (c 2.6, CHCl\(_3\)) for natural\} and from its relation to (S)-(−)-citronellal, the (S)-configuration for the natural product can be established.

In summary, we have accomplished the total synthesis of idiadione (1) in an optically active form from (S)-(−)-citronellal, and the absolute configuration of the natural product was determined to be 11\(S\).

REFERENCES

9. The 6\(E\) geometry of the olefinic bond was determined by comparison on the chemical shift data for the 22 (14\(E\)) and 24 methyl signals in the \(^{13}\)C-NMR spectrum of the major product (14) \{\([\alpha]_D^{19}\) 18.4, 18.5\}.