A NEW FLAVONOL GLUCOSIDE FROM ONION

Miyuki Furusawa, a Toshiyuki Tanaka, a Ken-ichi Nakaya, a Munekazu Inuma, b and Hironori Tuchiya c

a) Gifu Prefectural Institute of Health and Environmental Sciences, 1-1 Naka
Fudogaoka, Kakamigahara 504-0838, Japan
b) Gifu Pharmaceutical University, 5-6-1, Mitahora-higashi, Gifu 502-8585, Japan
c) Department of Dental Pharmacology, Asahi University School of Dentistry,
Hozumi, Gifu, Japan

Abstract – A new flavonol glucoside was isolated from the outer bulb of onions
(Allium cepa). The structure was determined by the analysis of spectral data.

Onion (Allium cepa) is well known as a rich source of flavonoid. Hirose et al. have been isolated
oxidative quercetin derivatives along with quercetin from outer scale of onions. 1 These compounds
structurally very interested. For the purpose of utilization of onion and the isolated compounds, we
have studied the constituents of A. cepa, from which we isolated a flavonol glucoside (1) having an
oxidative quercetin derivative as aglycone.
The MeOH extract of outer scales of onion was
repeatedly purified by Silica gel and LH-20 column
chromatography to give a new flavonol glucoside
along with three known compounds (2, quercetin
and quercetin 4′-O-glucoside).

Compound (1) was isolated as a yellow amorphous
solid, and gave positive reactions to the FeCl3 and
Gibbs tests on TLC. In the negative ion FABMS
spectrum, the [M-H] was observed at m/z 763.1143
which correspond to C36H27O19. The UV spectrum
(250, 270, 304 and 359 nm) showed that 1 had a
quercetin-like skeleton. The 1H and 13C NMR spectra data showed the presence of a β-glucose moiety
and appearance of some split or broaden signals (shown in EXPERIMENTAL). The split or broaden phenomenon suggested that 1 is a mixture of stereoisomers which gave a single spot on TLC and a single peak on HPLC analysis. The 1H NMR spectrum showed the presence of two sets of meta coupled protons (H-6'/8') and two ABX systems (H-2'/5'/6' and H-2''/5''/6''). The 13C NMR spectra showed the presence of two carbonyl groups (δ 176.8 and 188.6). The 1H and 13C NMR spectra including 2D methods of the aglycone moiety of 1 (Figure 2) was found to be very similar to 2 1,2 and the enzymatic hydrolysis of 1 gave 2 suggesting 1 to be a glucoside of 2. The position of the glucose moiety was determined by comparison of the spectral data of the two compounds, the chemical shift of about 0.26 ppm towards low field observed at H-3''' in 1 suggests the glucose moiety is attached at C-4'''. Furthermore, the correlations between H-5'''/glucose H-1 (anomeric) in the NOESY spectrum and C-4''''/glucose H-1 in the HMBC spectrum confirmed the position of the glucose molecule at C-4''''.

Hirose et al. presumed that oxidative quercetin (2) was formed from quercetin by radical scavenging reaction. 1 In a similar presumption 1 might also be produced by same pathway from quercetin and its 4'-O-glucoside.

EXPERIMENTAL

General Method

1H and 13C NMR spectra were measured on AL-300 (JEOL) spectrometer. Chemical shift values were shown as δ values with tetramethylsilane (TMS) as an internal reference. Peak multiplicities are quoted in Hz. Negative FAB-MS spectra were measured on JMS-DX 300 spectrometer equipped with JMA 3500 data analysis system (JEOL). IR spectra was recored on a FT/IR-300 spectrometer(JASCO). UV spectra was recorded on a UV-2200 spectrophotometer (Shimidzu) and optical rotation were measured on P-1020 (JASCO) Polarimeter. HPLC analysis carried out on the Shimadu VP system and Mightysil RP-18 GP (Kanto Chemical Co) as a column. Silica gel 60 (70-230 mesh, Merck), Sephadex LH 20 were used for column chromatography. Kiesel-Gel 60 F$_{254}$ (Merck) was used for analytical TLC. β-Glucosidase for enzymatic hydrolysis was used the products of Oriental Yeast Co Ltd.

Plant Material

Onions were purchased at Gifu City.

Extraction and Isolation

The brownish outer scale of onions (600 g) was air dried, powdered and extracted with MeOH (5 L) at rt for 6 days. The MeOH extract (56 g) was subjected to chromatography on silica gel eluted with CHCl$_3$-MeOH increasing polarity. The CHCl$_3$-MeOH (20:1) fraction was further chromatographed on Sephadex LH 20 eluted with MeOH to yield compound (2) (56 mg) and impure quercetin. Finally, quercetin (3.9 g) was purified by the chromatography on Sephadex LH 20 using EtOH-n-hexane (9:1) mixture. Fractionation of the CHCl$_3$-MeOH (10:1) fraction by Sephadex LH 20 column eluted with MeOH
yielded a mixture of compound (1) and quercetin 4'-O-glucoside. Compound (1) (220 mg) and quercetin 4'-O-glucoside (2.8 g) were finally obtained by Sephadex LH 20 column chromatography using acetone. Compound (1): A yellow amorphous powder; Negative HR-FAB-MS: [M-H]- m/z 763.1143 (Calcd 763.1146 for C36H25O19); Negative FAB-MS: m/z 763 [M-H]-, 602 [M-162 (glc)]; UV λ (nm, MeOH): 250, 270, 304, 359. [α]D -23° (c 0.1, MeOH); IR ν(cm⁻¹, KBr): 3438 (OH), 1646 (carbonyl); 1H NMR (300 MHz, acetone-δ) δ: 6.04 (br d, J= 1.7 Hz, H-6’), 6.11, 6.22 (each br d, J= 1.7 Hz, H-8”), 6.27 (d, J= 2.1 Hz, H-6), 6.60 (d, J= 2.1 Hz, H-8), 7.17 (d, J= 8.8 Hz, H-5”), 7.20, 7.21 (each d, J= 8.8 Hz, H-6”), 7.29 (d, J= 8.8 Hz, H-5”), 7.37, 7.39 (each d, J= 1.7 Hz, H-2”), 7.92 (d, J= 2.1 Hz, H-2’), 8.02 (dd, J= 8.8, 2.1 Hz, H-6’) [aglycone moiety]; δ 4.85, 4.86 (d, J= 7.4 Hz, H-1), 3.45-3.52 (m, H-2-6) [glucose moiety]; 13C NMR (75 MHz, acetone-δ) δ: 145.4 (C-2), 137.6 (C-3), 176.8 (C-4), 104.2 (4a), 162.3 (C-5), 99.3 (C-6), 165.4 (C-7), 94.7 (C-8), 157.9 (C-8a), 127.1 (C-1’), 117.1 (C-2’), 142.9 (C-3’), 141.8 (C-4’), 118.1 (C-5’), 120.6 (C-6’), 101.3 (C-2”), 92.4 (C-3”), 188.6 (C-4”), 100.6 (C-4”a), 165.0 (C-5”), 98.3 (C-6”), 170.2 (C-7”), 97.6 (C-8”), 160.6 (C-8”a), 127.1 (C-1”), 117.2 (C-2”), 148.0 (C-3”), 147.5 (C-4”), 117.6 (C-5”), 120.6 (C-6”) [aglycone moiety]; δ 103.5, 103.4 (C-1), 74.6 (C-2), 77.3 (C-3), 71.0 (C-4), 78.0 (C-5), 62.4 (C-6) [glucose moiety]. All signals were assigned by 1H-1H COSY, HMBC, HMCC spectrum (shown in Figure 2) and comparison with 2.

Enzymatic hydrolysis of 1. Compound (1) (0.5 mg) and β-glucosidase (16 U) were incubated in a solution (1.0 mL) of citric acid buffer (pH 5.2) at 50° in 3 h. The residue after centrifuge was dissolved in MeOH and the solution was used as analytical sample. HPLC conditions: mobile phase [A: 0.4 % phosphoric acid; B: 0.4 % phosphoric acid-acetinire (1 : 1)] 60 min linear gradient (100 % A→100 % B), flow rate: 1.0 mL/min, column oven temp: 40°. Rt: 1 (40 min), 2 (45 min).

REFERENCES