A TOTAL SYNTHESIS OF A NEW TYPE OF FURO[3,2-h]ISOQUINOLINE ALKALOID, TMC-120B

Teppei Kumemura, Tominari Choshi, Aki Hirata, Mitsuko Sera, Yohei Takahashi, Junko Nobuhiro, and Satoshi Hibino*

Graduate School of Pharmacy and Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan
hibino@fupharm.fukuyama-u.ac.jp

Abstract – A total synthesis of a new furo[3,2-h]isoquinoline alkaloid, TMC-120B (2) has been completed in sixteen steps. The key step is the synthesis of 7,8-disubstituted isoquinoline (17) based on the thermal electrocyclic reaction of 1-azahexatriene system involving the benzene 1,2-bond.

Three new furo[3,2-h]isoquinoline alkaloids, TMC-120A (1), B (2), and C (3) were isolated from a fermentation broth of Aspergillus ustus TC 1118 (Chart 1). Their structures have been determined by extensive spectroscopic and chemical analyses. TMC-120C (3) is the racemic compound, and an absolute configuration of the chiral compound (1) has not yet been ascertained. In addition, the structure of TMC-120B (2) has been also elucidated by X-Ray analysis. TMC-120B (2) shows moderate inhibitory activity against the interleukin-5 mediated prolongation of eosinophil survival (IC_{50}=2.0 \mu M).

We have been performing synthetic studies of biologically active condensed heteroaromatic compounds including natural products through the construction of functionalized frameworks based on the thermal electrocyclic reaction of either a 6π-electron or an aza 6π-electron system incorporating the heteroaromatic or aromatic portion. In our research program, we planned a total synthesis of TMC-120A (1), B (2), and C (3).
In this paper, we here describe the first total synthesis of TMC-120B (2) through the synthesis of 7,8-disubstituted isoquinoline nucleus by an application of an aza 6π-electrocyclic reaction\(^3,4\) of a 1-azahexatriene system, involving the benzene 1,2-bond. We chose the known 2,4-dimethoxymethyl(di-MOM)oxybenzaldehyde (4)\(^6\) as a starting material. As shown in Scheme 1, reduction of benzaldehyde (4) with sodium borohydride in EtOH, followed by treatment of the resulting alcohol (5: 90%)\(^7\) with tert-butyldimethylsilyl chloride (TBDMSCI) in the presence of imidazole in DMF gave the TBDMS ether (6) (85%). The ether (6) was treated with \(n\)-BuLi in THF, and the resulting lithio compound\(^8\) was then reduced with sodium cyanoborohydride in THF to give hydroxy compound (7).

\[
\begin{align*}
4 & \xrightarrow{i} 5 & 6 \\
& \xrightarrow{ii} 7 & 8 \\
& \xrightarrow{iii} 9 & 10: R = \text{CHO} \\
& & 11: R = \text{COOMe} \\
& \xrightarrow{iv} 12 & 13 \\
& \xrightarrow{v} 14 & 15 \\
& \xrightarrow{vi} 16 & 17 \\
& \xrightarrow{vii} 18 & 19 \\
& \xrightarrow{viii} 20 & 21 \\
& \xrightarrow{ix} 22 & 23 \\
& \xrightarrow{x} 24 & 25 \\
& \xrightarrow{xi} 26 & 27 \\
& \xrightarrow{xii} 28 & 29 \\
\end{align*}
\]

Scheme 1. Reagent and conditions: (i) NaBH\(_4\), EtOH, rt, 2 h (90%), (ii) TBDMSCI, imidazole, DMF, rt, 12 h (85%), (iii) \(n\)-BuLi, THF, 40 min and then DMF, 0°C, 20 min (75%), (iv) MeONH\(_2\) - HCl, AcONa, EtOH, 80°C, 12 h (89%), (v) TBAF, THF, rt, 1.5 h (92%), (vi) act. MnO\(_2\), CH\(_2\)Cl\(_2\), rt, 24 h (89%), (vii) conc. HCl, MeOH, 0°C, 3 h (92%), (viii) NaH, DMF, BrCH\(_2\)COOMe, rt, 12 h (93%), (ix) AcOH, 90°C, 12 h (80%), (x) Tf\(_2\)O, pyridine, CH\(_2\)Cl\(_2\), 0°C, 4 h (85%), (xi) Me-CH=CH-SnBu\(_3\), Et\(_4\)NCl, PdCl\(_2\)(PPh\(_3\))\(_2\), DMF, 80°C, 4 h (83%).
quenched with DMF to yield the benzaldehyde derivative (7) (75%). The reaction of the aldehyde (7) tetrabutylammonium fluoride (TBAF) in THF to give benzyl alcohol (9) (92%). Oxidation of 9 with hydroxylamine methyl ether in EtOH gave oxime methyl ether (8) (89%), which was treated with activated manganese dioxide (MnO₂) in CH₂Cl₂ afforded the benzaldehyde derivative (10) (89%), but a direct conversion of a formyl group of 10 into the methyl ester (11) failed. On the other hand, treatment of 10 with conc. HCl in MeOH at 0°C selectively produced 2-hydroxybenzaldehyde derivative (12) (92%), which was converted into the ether (13) by means of methyl bromoacetate with sodium hydride (93%). The cleavage of MOM-ether (13) in acetic acid at 90°C successfully provided the 4-hydroxybenzaldehyde (14) (80%), and sequential treatment of 14 with trifluoromethanesulfonic anhydride (Tf₂O) and pyridine at 0°C then gave the triflate (15) (85%). The palladium-catalyzed cross-coupling reaction of 15 with tributyl 1-propenyltin in the presence of PdCl₂(PPh₃)₂ in DMF at 80°C afforded the appropriate o-propenyl aldoxime methyl ether (16) (83%) as a 1-aza 6π-electron system. The thermal electrocyclic reaction of 16 was carried out in o-dichlorobenzene at 180°C⁵ to produce the desired 7,8-disubstituted isoquinoline (17) in a somewhat low yield (44%).

For the formation of the furanone ring by Dieckmann condensation (Scheme 2), 7-formylisoquinoline (17) was converted into the methyl ester (18) using sodium cyanide, MnO₂, and acetic acid in MeOH according to Corey’s procedure⁹ (83%). The cyclization of 18 with sodium methoxide in MeOH at 80°C gave the β-keto ester (19) (66%), which was treated with lithium hydroxide in aqueous DMSO at 70°C¹⁰ to yield the expected furanone (20) (75%). Finally, the reaction of 20 with acetone in the presence of lithium diisopropylamide (LDA), followed by treatment with methanesulfonyl chloride (MsCl) and dimethylaminopyridine (DMAP) in pyridine¹¹ provided TMC-120B (2) (33%). The physical and spectroscopic data of synthetic TMC-120B (2) agreed with those of natural TMC-120B (2) in all respects.¹²

Scheme 2. Reagent and conditions : (i) NaCN, AcOH, MnO₂, MeOH, rt, 4 h (83%), (ii) NaOEt, MeOH, 80°C, 12 h (66%), (iii) LiOH - H₂O, DMSO-H₂O, 70°C, 2 h (75%), (iv) LDA, Me₂CO, THF, -78°C, 4 h; MeSO₂Cl, DMAP, pyridine, 0°C, 2 h (33%).
Thus, a first total synthesis of TMC-120B (2) was completed in sixteen steps through the construction of the appropriate 7,8-disubstituted isoquinoline framework based on the thermal electrocyclic reaction of the 1-azatriene system, followed by the formation of a furanone ring. Further studies of the total syntheses of TMC-120A (1) and C (3) are now in progress.

ACKNOWLEDGEMENT
This work was supported in part by Grant-in-Aid for Scientific Research (C) (No. 15590033) from the Ministry of Education, Science, Sports and Culture of Japan.

REFERENCES AND NOTES

7. All new compounds provided satisfactory spectroscopic and analytical data.

12. Synthetic TMC-120B (2): mp 175-178°C (MeOH); 1H-NMR (300 MHz, CDCl$_3$) δ 2.26 (3H, s), 2.45 (3H, s), 2.76 (3H, s), 7.38 (1H, d, J=8.6 Hz), 7.56 (1H, s), 7.83 (1H, d, J=8.6 Hz), 9.57 (1H, s); 13C-NMR (75 MHz, CDCl$_3$) δ 17.6, 20.4, 24.7, 114.6, 119.4, 119.6, 120.6, 124.2, 133.9, 141.4, 145.6, 146.2, 156.7, 164.0, 182.3. Natural TMC-120B (2): mp 176-177°C; 1H-NMR (400 MHz, CDCl$_3$) δ 2.25 (3H, d, J=0.7 Hz), 2.43 (3H, d, J=0.7 Hz), 2.74 (3H, s), 7.35 (1H, d, J=8.5 Hz), 7.52 (1H, s), 7.80 (1H, d, J=8.5 Hz), 9.52 (1H, s); 13C-NMR (100 MHz, CDCl$_3$) δ 17.5, 20.4, 24.7, 114.6, 119.3, 119.5, 120.5, 124.1, 133.7, 141.3, 145.6, 146.2, 156.7, 164.0, 182.1.