SYNTHESIS OF MOLECULAR TWEEZERS BEARING TWO PORPHYRINS AND ITS COMPLEXATION TOWARD ELECTRON ACCEPTORS

Hajime Iwamoto, Masaki Yamaguchi, Saki Hiura, and Yoshimasa Fukazawa*

Department of Chemistry, Graduate School of Science, Hiroshima University,
1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan

Abstract – Synthesis of new flexible molecular tweezers 1•M₂ (M = 2H, Co, Zn, Cu, Ni) based on bis-dioxa[2.2]orthocyclophane bearing two porphyrins is presented. The molecular tweezers (1•(2H)₂) can bind not only planar π-electron acceptors, such as tetracyanoquinodimethane (TCNQ) and tetracyanobenzene (TCNB) but also a spherical guest C₆₀.

Recognition of planar molecules by non-covalent interaction is an interesting topic in host-guest chemistry in order to understand the effects of π-π stacking interactions. Cleft molecules,¹ which have two aromatic chromophores connected by a spacer, are suitable receptors for planar π-electron guests, since they can hold the guest with the two aromatic arms through the π-π stacking interactions. In our previous work,² we have demonstrated that the flexible structure based on bis-dioxa[2.2]orthocyclophane can bind π-electron acceptors such as tetracyanoquinodimethane (TCNQ) and tetracyanobenzene (TCNB), because the two terminal aromatic rings take tweezers-type arrangement with face-to-face orientation, which is suitable for π-π stacking interactions. It is well known that porphyrin has an extended π-electron surface, and also interesting properties such as molecular transfer, oxidation catalyst and electron transfer. These characters have been stimulating chemists to investigate host-guest chemistry using porphyrin. While the stacking interaction of aromatic compounds with synthetic porphyrins in aqueous media is extensively documented,³ it is rather limited in organic media.⁴ In this paper, we wish to report the new molecular tweezers (1•M₂) bearing two metallloporphyrins at their termini, which shows binding affinity toward not only planer electron acceptor guests but also a spherical guest, C₆₀.⁵
Figure

The synthesis of the host molecule \((1\cdot M_2) \) is shown in Scheme 1. Inter- and intra-molecular Williamson etherification of 4,5-dinitropyrocatehol (3)\(^6\) with 1,4-dibutoxy-2,3,5,6-tetrakis(bromomethyl)benzene (2)\(^7\) by treatment with Cs\(_2\)CO\(_3\) in acetone give tetranitro compound (4) in 60% yield. Reduction of four nitro groups of 4 to amino groups with Raney-Ni(W2) under hydrogen atmosphere afforded tetraamine compound (5), which was unstable under atmospheric conditions, and therefore it was used to the next step without further purification. Condensation of 5 with tetr phenylporphyrin-2,3-dione (6)\(^8\) afforded desired host molecule 1 in 25% yield over two steps. Corresponding metalloporphyrins were quantitatively obtained by treatment of 1 with excess amounts of the metal acetates in DMF, respectively.\(^9\) The reference compounds (7) and (8) were also prepared by the similar procedure for comparison.\(^10\)

Scheme 1
Scheme 2

As shown in Figure 1, standard titration experiments between 1•(2H)₂ and TCNQ were carried out by ¹H-NMR spectroscopy in CDCl₃. The signal of the proton of TCNQ shifted upfield when host molecule (1) was added to the guest solution, indicating that TCNQ was influenced by porphyrin’s ring current of the host molecule. The non-linear curve fitting analysis of the complexation induced up-field shift data of the TCNQ proton gave an association constant (160 ± 4 M⁻¹) and a complexation-induced chemical shift change Δδ of the protons (1.02 ± 0.02 ppm) in the completely bound guest using damping Gauss-Newton algorithm with a 1:1 binding stoichiometry (Table 1). Similarly, an association constant and a complexation-induced chemical shift were obtained from titration experiments using TCNQ as the guest molecule.

![Diagram showing titration experiments](attachment:image)

Figure 1. Partial (aromatic region) ¹H NMR spectra (500 MHz) recorded in CDCl₃ at 298 K of a) TCNQ (1.0 mM), b) TCNQ (1.0 mM) and 1.0 equiv host, c) TCNQ (1.0 mM) and 2.0 equiv host, and d) TCNQ (1.0 mM) and 4.0 equiv host.

In order to examine the contribution of porphyrin ring for host-guest complexation, mono-porphyrin host molecule (7) and non-porphyrin host (8) were used as reference compounds, and the binding constants and the complexation-induced chemical shifts of TCNQ and TCNQ were obtained in the same way (Table 1). 1•(2H)₂ has larger binding constants and larger complexation-induced chemical shifts toward TCNQ and TCNQ when compared to those of 7. While the induced shifts of the guest are too small to obtain binding constant of 8, small up-field shift was shown when the excess amount (10 eq.) of the host
was added to the guest solution. These results suggest that two porphyrin rings play an important role in grasping the planar π-electron accepter guests in solution phase.

Table 1. Association constants K (M$^{-1}$) and complex induced chemical shifts $\Delta\delta$ (ppm) of host molecules with π-electron accepting guestsa

<table>
<thead>
<tr>
<th>Host</th>
<th>$1\cdot(2H)_2$</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCNB</td>
<td>K(M$^{-1}$)</td>
<td>160 ± 4</td>
<td>140 ± 20</td>
</tr>
<tr>
<td></td>
<td>$\Delta\delta$</td>
<td>1.02 ± 0.02</td>
<td>0.29 ± 0.02</td>
</tr>
<tr>
<td>TCNQ</td>
<td>K(M$^{-1}$)</td>
<td>114 ± 2</td>
<td>71 ± 10</td>
</tr>
<tr>
<td></td>
<td>$\Delta\delta$</td>
<td>0.76 ± 0.01</td>
<td>0.32 ± 0.04</td>
</tr>
</tbody>
</table>

(a) Measured by 1H NMR spectroscopic titration in CDCl$_3$ at 298 K. (b) It is impossible to determine the association constants due to the very small interactions between 3 and guest molecules. (c) These values was obtained under the condition $[H]/[G]=10$.

It is well known that fullerenes are weak electron acceptors with curved surface. This character attracted much attention and the complex formation of fullerenes with porphyrins and/or metalloporphyrins was studied. Especially, Aida’s host14 binds the fullerene strongly. It has an ideal parallel arrangement of two porphyrins with 12 Å separation when bound to C_{60}. On the other hand, our host has a shorter interplaner distance (ca. 6.5 Å) when it has a cleft type conformation. It would be too small to bind C_{60}. However, the spacer unit of the host, dioxa[2.2]orthocyclophane has a good flexibility for adjusting to the larger guest molecules.

In order to estimate the binding abilities of the host molecule toward C_{60}, titration experiments were carried out with UV spectroscopic method. When C_{60} was added to free base $1\cdot M_2$ solution in toluene at 25 °C, isosbestic points were observed at 420 and 468 nm, and the Soret absorption band showed a clear red shift with a decrease in absorbance. From the observed spectral change profiles, the association constants were evaluated as shown in Table 2. This titration showed the following trend for fullerene binding: $2H > Co > Zn > Cu > Ni$. Although the association constants are much smaller than those of the Aida’s host, the binding trend to C_{60} is very similar. In order to bind the large spherical guest, the molecular tweezers should widen the interplaner separation of the two terminal porphyrins from the rather strain-free parallel arrangement to a tilted form as has been found in the Boyd’s Pd-linked porphyrin dimers.15 It can be easily attained by changing the conformation of one of the two dioxa[2.2]orthocyclophanes, the hinge part of the host, from the rather strain-free twist boat to a chair form. A modeling study16 suggested the inclination of one of the porphyrin rings by 38° with respect to the other with the chair conformation of one of the hinges of the host. The tilted arrangement of the porphyrins shifts the nearest contact point to C_{60} guest from the ideal centroid of the porphyrin toward
the hinge part to some extent. This might decrease the attractive interaction between the terminal porphyrin rings and the C_{60} guest.

Table 2. Association constant K (M⁻¹) of metalloporphyrin dimers 1•M₂ with C_{60}^a

<table>
<thead>
<tr>
<th>M</th>
<th>2H</th>
<th>Co(II)</th>
<th>Zn(II)</th>
<th>Cu(II)</th>
<th>Ni(II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K(M⁻¹)</td>
<td>940 ± 30</td>
<td>740 ± 20</td>
<td>650 ± 20</td>
<td>480 ± 40</td>
<td>280 ± 40</td>
</tr>
</tbody>
</table>

(a) Measured by UV-VIS spectroscopic titration in toluene at 298 K.

The binding constants of 1•M₂ to the C_{60} guest are very similar to those of the Boyd’s hosts having a similar tilted arrangement of the two porphyrins. These results support the idea that the two porphyrins of 1•M₂ have the tilted arrangement in the complexes with C_{60}.

In conclusion, the host molecule (1•M₂) can bind not only planer π-electron acceptor guests such as TCNB and TCNQ, but also the large non-planar π-electron guest, C_{60} in organic media. These results would give us further information for π-π interaction of porphyrin.

ACKNOWLEDGEMENTS

We thank Ms. Yanai, the Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University for the measurement of Mass spectroscopy. This work was carried out with the support of the grant-in Aid for Scientific Research (No. 12740349) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, which is gratefully acknowledged.

REFERENCES AND NOTES

9. The host molecules were identified by 1H-NMR and MS spectroscopy. Data of 1Zn$_2$ are shown below; 1H NMR (500 MHz, CDCl$_3$) δ 8.85 (d, J = 5.2 Hz, 4H), 8.82 (d, J = 3.7 Hz, 4H), 8.78 (s, 4H), 8.14 (d, J = 6.4 Hz, 8H), 8.01 (d, J = 6.7 Hz, 4H), 7.82 (t, J = 7.8 Hz, 4H), 7.73 (m, 8H), 7.39 (s, 4H), 5.54 (s, 8H), 3.71 (t, J = 6.6 Hz, 4H), 1.97 (m, 4H), 1.70 (m, 4H), 0.90 (m, 6H). IR (CHCl$_3$) cm$^{-1}$: 2927, 1481, 1226, 1191, 1004. UV-VIS (CHCl$_3$): λ_{max} 410 nm (ε 80 900 M$^{-1}$ cm$^{-1}$), 442 (ε 86 500), 568 (ε 13 000), 610 (ε 9 700). HRMS (FAB-MS positive mode, NBA matrix) calcd for C$_{113}$H$_{82}$N$_{12}$O$_6$66Zn$_2$[M]$^+$ 1894.5001, found 1894.4941.

10. The reference compounds (7) and (8) were synthesized using the method mentioned in reference 2.

12. Because the two butoxy chains work as an obstacle to bind the guest molecule, 8 shows a weak
binding affinity and the small complexation induced shift of the guest.

