1-SUBSTITUTED 4-HYDROXY-3-QUINOLINESULFONIC ACIDS -
PREPARATION AND STRUCTURES

Leszek Skrzypeka and Kinga Suwińskab

a Department of Organic Chemistry, The Medical University of Silesia,
Jagiellońska 4, 41-200 Sosnowiec, Poland, e-mail: skrzypek@slam.katowice.pl
and b Institute of Physical Chemistry, Polish Academy of Science, Kasprzaka
44/52, 01-224 Warszawa, Poland, e-mail: kinga@ichf.edu.pl

Abstract: 1-Methyl and 1-ethyl-1,4-dihydro-4-oxo-3-quinolinesulfonic acids
were synthesized from 4-chloro-3-quinolinesulfonyl chloride. It was shown that
the acids and their 1-H substituted analogues form a betain having a hydroxy
substituent located in position 4 and a sulfonate anion group in position 3.
However, the sodium salts of the acids take a form of a quinolone tautomer.

INTRODUCTION

Both in solution and solid state 2- and 4-hydroxypyridines and quinolines form almost exclusively
pyridone or quinolone tautomers. Moreover, it is not often that we can isolate this tautomer that is less
stable for the certain compound class. Recently, 4-mercapto-3-quinolinesulfonic acid (1A) and 1,4-di-
hydro-4-thioxo-3-quinolinesulfonic acid (1B) have been isolated as tautomeric solids.1 The chemical shift
of H-2 in 1H NMR spectra are different for these tautomers. The comparison of the shifts reveals that H-2
becomes deshielded by more than 0.75 ppm in tautomer 1A vs. 1B. Namely, in 1H NMR spectra
(DMSO-\textit{d}_6) of 1,4-dihydro-4-thioxo-3-quinolinesulfonic acid (1B) this can be observed at 8.73 ppm.
Similar shift (8.84 ppm) occurs in a sodium salt 1B-Na, but not in 4-mercapto-3-quinolinesulfonic acid
(1A), where H-2 appears at 9.48 ppm.1

\begin{center}
\begin{tabular}{c}
\textbf{1A} \\
\begin{tikzpicture}
\draw[thick] (0,0) -- (1,0) -- (1,-1) -- (0,-1) -- cycle;
\draw[thick] (1,-1) -- (2,-1) -- (2,-2);
\draw[thick] (0,-1) -- (0,-2) -- (1,-2);\end{tikzpicture}
\end{tabular}
\begin{tabular}{c}
\textbf{1B and 1B-Na} \\
\begin{tikzpicture}
\draw[thick] (0,0) -- (1,0) -- (1,-1) -- (0,-1) -- cycle;
\draw[thick] (1,-1) -- (2,-1) -- (2,-2);
\draw[thick] (0,-1) -- (0,-2) -- (1,-2);\end{tikzpicture}
\end{tabular}
\end{center}
We have previously hydrolyzed 4-chloro-3-quinolinesulfonyl chloride (2) to 1,4-dihydro-4-oxo-3-quinolinesulfonic acid assuming a priori that it takes a quinolone tautomeric form.\(^2\,^3\) However, the chemical shift of H-2 in this acid appears at 9.30 ppm,\(^2\) which seems to indicate the 4-hydroxy 3A and not the 4-oxo 3B form. Instead, the signal for H-2 in a sodium salt 3B-Na, which appears at 8.42 ppm, suggests that now quinolone tautomer is formed.

![3A and 3B-Na](image)

In order to prove conclusively that acid 3 takes a form of 4-hydroxyquinoline 3A and not 4-quinolone 3B in similar way to sodium salt 3B-Na, we aimed the synthesis of the analogues of acid 3 which were substituted with the 1-alkyl group. We assumed that the alkylation of nitrogen N-1 should force the compound to take a quinolone form. Accordingly, the aim of the current investigations was to establish a tautomeric form of 1-substituted 1,4-dihydro-4-oxo-3-quinolinesulfonic acids (5B, 6B).

RESULTS AND DISCUSSION

Acids 5B, 6B were synthesized by reacting 4-chloro-3-quinolinesulfonyl chloride (2) with dialkyl sulfate (dimethyl and diethyl) to respective quinolinium salts 4. We used the reaction procedures described previously,\(^4\,^5\) while isolated salts 4 were hydrolyzed to respective acids 5B, 6B with good yields (92% and 86%).

![Reaction Scheme](image)

5B: R = Me, 6B: R = Et
5B-Na: R = Me, 6B-Na: R = Et
The H-2 chemical shifts (DMSO-d_6) of acids 5B, 6B were specified below and for the comparison we also illustrate the H-2 chemical shifts of the salts 5B-Na, 6B-Na, respectively.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>5B</th>
<th>6B</th>
<th>5B-Na</th>
<th>6B-Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ H-2 (ppm)</td>
<td>9.32</td>
<td>9.13</td>
<td>8.55</td>
<td>8.51</td>
</tr>
</tbody>
</table>

This indicates that acid salts takes a form of quinolone, while 4-hydroxyquinoline tautomer is favored for the acids by themselves. The X-ray structures of the acids 5 and 6 are similar to that of 4-mercapto-3-quinolinesulfonic acid (1A) which forms a zwitterion:

\[
\text{OH} \quad \text{SO}_3^- \\
\text{N} \quad \text{R} \\
3': R = H, 5': R = \text{Me}, 6': R = \text{Et}
\]

Below we report the X-ray data and structures of the newly synthesized acids 3', 5', 6'.

Figure 1. Molecular structure of 3' and packing of the molecules in the crystal; bond lengths (Å):
S(1)-O(4) 1.421(3), S(1)-O(3) 1.439(2), S(1)-O(2) 1.453(2), S(1)-C(3) 1.779(3), O(1)-C(4) 1.376(4), N(1)-C(2) 1.317(4), N(1)-C(10) 1.372(4), C(2)-C(3) 1.380(4), C(3)-C(4) 1.395(4), C(4)-C(9) 1.395(4), C(5)-C(6) 1.351(5), C(5)-C(9) 1.411(4), C(6)-C(7) 1.397(5), C(7)-C(8) 1.367(5), C(8)-C(10) 1.399(5), C(9)-C(10) 1.402(5).
Figure 2. Molecular structure of 5' and packing of the molecules in the crystal; bond lengths (Å):
S(1)-O(4) 1.416(2), S(1)-O(3) 1.416(2), S(1)-O(2) 1.441(3), S(1)-C(3) 1.783(3), O(1)-C(4) 1.316(4),
C(2)-N(1) 1.333(4), C(2)-C(3) 1.380(4), C(3)-C(4) 1.391(4), C(4)-C(9) 1.427(4), C(5)-C(6) 1.371(5),
C(5)-C(9) 1.408(4), C(6)-C(7) 1.383(5), C(7)-C(8) 1.361(5), C(8)-C(10) 1.408(4), C(9)-C(10) 1.408(4),
C(10)-N(1) 1.383(4), N(1)-C(11) 1.506(5).

Figure 3. Molecular structure of 6' and packing of the molecules in the crystal; bond lengths (Å):
S(1)-O(3) 1.4302(15), S(1)-O(4) 1.4305(15), S(1)-O(2) 1.4592(14), C(2)-C(3) 1.3842(19), C(3)-S(1) 1.7815(15),
C(4)-O(1) 1.3281(18), C(4)-C(10) 1.424(2), C(5)-C(6) 1.361(3), C(5)-C(10) 1.415(2), C(6)-C(7) 1.396(3),
C(7)-C(8) 1.363(3), C(8)-C(9) 1.412(2), C(9)-C(10) 1.407(2), C(11)-C(12) 1.507(3), N(1)-C(2) 1.3282(19),
N(1)-C(9) 1.388(2), N(1)-C(11) 1.484(2).

Table 1. Hydrogen bonds for 4-hydroxy-3-quinolinesulfonic acids (3', 5', 6') (Å, °)

<table>
<thead>
<tr>
<th>Compounds</th>
<th>D-H···A</th>
<th>D(D-H)</th>
<th>d(H···A)</th>
<th>d(DA)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3'</td>
<td>O(1)-H(1)···O(3)-1</td>
<td>0.82(5)</td>
<td>2.13(3)</td>
<td>2.739(3)</td>
<td>131(2)</td>
</tr>
<tr>
<td></td>
<td>O(1)-H(1)···O(2)</td>
<td>0.82(4)</td>
<td>2.21(5)</td>
<td>2.858(3)</td>
<td>136(4)</td>
</tr>
<tr>
<td></td>
<td>N(1)-H(1)···O(2)-2</td>
<td>0.85(4)</td>
<td>1.90(4)</td>
<td>2.750(4)</td>
<td>175(3)</td>
</tr>
<tr>
<td>5'</td>
<td>O(1)-H(1)···O(2)</td>
<td>0.77(5)</td>
<td>1.79(5)</td>
<td>2.533(4)</td>
<td>161(5)</td>
</tr>
<tr>
<td>6'</td>
<td>O(1)-H(1)···O(2)</td>
<td>0.84(3)</td>
<td>1.72(3)</td>
<td>2.525(2)</td>
<td>161(3)</td>
</tr>
</tbody>
</table>

Symmetry equivalent positions: (1) -x, -y, -z, (2) -x, y+1/2, -z+1/2
X-Ray data clearly indicates a betaine structure of acids 3', 5', 6'. Moreover, intramolecular hydrogen bonding between a hydrogen atom of 4-hydroxyl and at least one oxygen atom of the sulfonic group can be observed (Table 1). Additionally, intermolecular hydrogen bonding involving a hydrogen atom attached to nitrogen and an oxygen atom of sulfonic group of the second molecule is formed for nonalkylated acid 3'. Hydrogen bonding should result in a slightly longer S-O bond (3' 1.453 Å, 5' 1.441 Å, 6' 1.459 Å) if we compare sulfonic group involved in such a bond to this unbonded (3' 1.421 and 1.439 Å, 5' 1.416 Å, 6' 1.430 Å). The comparison of the bond lenghths in Fig 1 - Fig 3 indicates that hydrogen bonding is formed for the acidic group located in ortho position to the hydroxyl function. A question appeared which molecular properties decide that some of 4-quinolones can also appear in a form of 4-hydroxyquinolines.

A lot of X-ray structures of 4-pyridones have been described. Some of these compounds included carboxylic or sulfonic group. Although it has not been indicted clearly, a portion of them form a zwitterionic structure with 4-hydroxygroup.6-8 On the other hand, such a structure has not been observed for other compounds having a carboxylic or sulfonic function.9-10 Then, what is a difference deciding the structure for these two compound groups? It appears that all compounds forming the zwitterionic structure have a hydroxy function located at the position 3 of pyridine cycle. In turn, 3-hydroxy-4-pyridones that do not have an acid group form exclusively a ketoform.11-13

CONCLUSIONS
It has been found that the existence of the stable 4-hydroxyquinoline tautomers of 4-quinolones is limited by the occurrence of the carboxylic or sulfonic acid group within the molecule. This observation was the same as those of 4-hydroxypyridine derivatives which was reported previously. Such a group makes possible a protonation of the oxygen atom located in the position 4. However, this alone is not sufficient to observe a formation of 4-hydroxy tautomers. Intramolecular hydrogen bonding engaging a hydrogen atom of 4-hydroxy function and an oxygen atom of the molecule is necessary for this effect. Thus, the co-occurrence of both above mentioned molecular attributes is necessary for the complete pyridine aromatization.
EXPERIMENTAL

Synthesis of 1-alkyl-4-hydroxy-3-quinolinesulfonic acids. General procedure:
A mixture of 4-chloro-3-quinolinesulfonyl chloride (2) (524 mg, 2 mmol) and dialkyl sulfate (1 mL) (dimethyl sulfate 10.6 mmol or diethyl sulfate 7.6 mmol) was kept at 92 °C for 2 h (dimethyl sulfate) or 5 h (diethyl sulfate). After cooling the excess of alkyl sulfate was extracted with Et₂O (3 x 5 mL), water (5 mL) was added to the resulted quinolinium salt and refluxed for 1 h. The precipitate was filtered off to give of 1-methyl-4-hydroxy-3-quinolinesulfonic acid (5') (440 mg, 92%) and of 1-ethyl-4-hydroxy-3-quinolinesulfonic acid (6') (435 mg, 86%). The acids were recrystallized from 50% AcOH.

1-Methyl-4-hydroxy-3-quinolinesulfonic acid (5'): mp 306-307 °C (decomp). EI MS (15 eV), (m/z) 159(M-SO₃, 100%). ¹H NMR (DMSO-d₆) δ: 4.30(s, 3H, CH₃), 9.32(s, 1H, H2), 8.40-8.43(m, 1H, H5), 8.09-8.15(m, 2H, H7, H8), 7.79-7.85(m, 1H, H6). Anal. Calcd for C₁₀H₉NO₄S: C 50.20, H 3.79, N 5.85, S 13.40. Found: C 50.02, H 3.80, N 6.01, S 13.35.

1-Ethyl-4-hydroxy-3-quinolinesulfonic acid (6'): mp 299-301 °C (decomp). EI MS (15 eV), (m/z) 173(M -SO₃, 100%). ¹H NMR (DMSO-d₆) δ: 1.45(t, J=7.2 Hz, 3H, CH₂CH₃), 4.70(q, J=7.2 Hz, 2H, CH₂CH₃), 9.13(s, 1H, H2), 8.33-8.42(m, 1H, H5), 8.14-8.17(m,1H, H8), 8.01-8.09(m, 1H, H7), 7.71-7.76(m, 1H, H6). Anal. Calcd for C₁₁H₁₁NO₄S: C 52.17, H 4.38, N 5.53, S 12.66. Found: C 51.91, H 4.33, N 5.87, S 12.90.

Synthesis of the sodium salts of 1,4-dihydro-4-oxo-3-quinolinesulfonic acids. General procedure:
To 4-hydroxy-3-quinolinesulfonic acid (3', 5', 6') (1 mmol) 0.5 M solution of NaOH (2 mL) was added and reaction mixture was heated until solid acid sample was dissolved. Sodium salts that were formed after water evaporation, do not melt up to 330 °C. Below we specify chemical shifts δ (ppm, DMSO-d6) of the salts resulted, respectively:

3B-Na 8.42(s, 1H, H2), 8.19-8.21(m, 1H, H5), 7.63-7.70(m, 2H, H8, H7), 7.36-7.41(m, 1H, H6).
5B-Na 3.95(s, 3H, CH₃), 8.55(s, 1H, H2), 8.30-8.33(m, 1H, H5), 7.76-7.86(m, 2H, H8, H7), 7.45-7.53(m, 1H, H6).
6B-Na 1.35(t, J=7.2 Hz, 3H, CH₂CH₃), 4.41(q, J=7.2 Hz, 2H, CH₂CH₃), 8.51(s, 1H, H2), 8.27-8.29(m, 1H, H5), 7.75-7.83(m, 2H, H8, H7), 7.42-7.47(m, 1H, H6).

X-Ray analysis
All data were collected on a Nonius KappaCCD diffractometer, graphite monochromatized MoKα radiation. Structures were solved and refined using the programs SHELXS-97 ¹⁴ (Sheldrick, 1990) and SHELXL-97 ¹⁵ (Sheldrick, 1997), respectively. All non-hydrogen atoms refined anisotropically, H atoms attached to carbons attached in geometric positions and refined as 'riding' atoms, those attached to oxygens and nitrogen 3' refined. Isotropic thermal parameters of hydrogens based upon the corresponding
bonding carbon or oxygen atom \([U_{\text{iso}} = 1.2U_{\text{eq}}, U_{\text{iso}} = 1.5U_{\text{eq}} \text{ for CH}_3 \text{ and OH hydrogens}]\). Crystal data and experimental details for structure determinations are presented in Table 2.

Table 2. Crystal data and structure refinement for reported structures.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>3'</th>
<th>5'</th>
<th>6'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C₉H₇NO₄S</td>
<td>C₁₀H₉NO₄S</td>
<td>C₁₁H₁₁NO₄S</td>
</tr>
<tr>
<td>Formula weight</td>
<td>225.22</td>
<td>239.24</td>
<td>253.27</td>
</tr>
<tr>
<td>Temperature, (K)</td>
<td>293(2)</td>
<td>293(2)</td>
<td>293(2)</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Monoclinic, P2₁/c</td>
<td>Monoclinic, C2/m</td>
<td>Triclinic, P T</td>
</tr>
<tr>
<td>Unit cell dimensions, (Å, °)</td>
<td>a = 9.5677(4)</td>
<td>a = 16.0609(9)</td>
<td>a = 6.7442(4)</td>
</tr>
<tr>
<td></td>
<td>b = 14.3753(9)</td>
<td>b = 6.6007(5)</td>
<td>b = 8.8715(5)</td>
</tr>
<tr>
<td></td>
<td>c = 7.1175(6)</td>
<td>c = 9.4955(5)</td>
<td>c = 9.7167(8)</td>
</tr>
<tr>
<td></td>
<td>α = 76.642(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>β = 108.969(3)</td>
<td>β = 102.683(3)</td>
<td>β = 88.196(3)</td>
</tr>
<tr>
<td></td>
<td>γ = 71.452(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume, (Å³)</td>
<td>925.8(1)</td>
<td>982.09(11)</td>
<td>535.70(6)</td>
</tr>
<tr>
<td>Z, Calculated density, (g/cm³)</td>
<td>4, 1.616</td>
<td>4, 1.613</td>
<td>2, 1.570</td>
</tr>
<tr>
<td>Absorption coefficient, (mm⁻¹)</td>
<td>0.341</td>
<td>0.327</td>
<td>0.304</td>
</tr>
<tr>
<td>F(000)</td>
<td>464</td>
<td>496</td>
<td>252</td>
</tr>
<tr>
<td>Crystal shape</td>
<td>Plate</td>
<td>Plate</td>
<td>Block</td>
</tr>
<tr>
<td>Crystal size, (mm)</td>
<td>0.45 × 0.30 × 0.10</td>
<td>0.30 × 0.30 × 0.10</td>
<td>0.28 × 0.28 × 0.32</td>
</tr>
<tr>
<td>Crystal colour</td>
<td>Light yellow</td>
<td>Light yellow</td>
<td>Light yellow</td>
</tr>
<tr>
<td>θ range for data collection (°)</td>
<td>3.34 to 26.36</td>
<td>3.01 to 27.48</td>
<td>3.19 to 30.01</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>7355 / 1849</td>
<td>3622 / 1214</td>
<td>4437 / 3098</td>
</tr>
<tr>
<td></td>
<td>[R_{\text{int}} = 0.049]</td>
<td>[R_{\text{int}} = 0.023]</td>
<td>[R_{\text{int}} = 0.019]</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.33</td>
<td>1.05</td>
<td>1.04</td>
</tr>
<tr>
<td>Final R indices [I > 2σ(I)]</td>
<td>R = 0.078</td>
<td>R = 0.045</td>
<td>R = 0.046</td>
</tr>
<tr>
<td></td>
<td>WR = 0.109</td>
<td>WR = 0.108</td>
<td>WR = 0.112</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R = 0.102</td>
<td>R = 0.054</td>
<td>R = 0.062</td>
</tr>
<tr>
<td></td>
<td>WR = 0.116</td>
<td>WR = 0.113</td>
<td>WR = 0.118</td>
</tr>
</tbody>
</table>
REFERENCES

* Part XCVIII in the series of Azinyl Sulfides.