DIRECT THIATION OF 7-THEOPHYLLINE NUCLEOSIDES

Rodrigo Rico-Gómez,* Manuel L. Ruiz-Mora, Ezequiel P. de Inestrosa Villatoro, and Josefa Rios-Ruiz
Departamento de Bioquímica, Biología Molecular y Química Orgánica,
Universidad de Málaga
29071 Málaga, Spain

Abstract — 8-Methyl-6-thiotheophylline nucleosides have been obtained by treatment of the corresponding 8-methyl-theophylline nucleosides with Lawesson's Reagent.

Synthesis of thionucleosides has been carried out by different synthetic methods. The reagents classically used are either P_2S_5 or H_2S under adequate conditions depending on the nature of the nucleosides.

Thioxanthines can be prepared from xanthines with P_2S_5 in hot pyridine. Oxo groups in C-2 have shown to be less reactive than those in C-6. Thus, xanthines give selectively 2-oxo-6-thioxanthines. The thiation reaction when the nitrogen atoms in the xanthines are alkylated is more difficult. Wooldridge and Slack have prepared 6-thiotheophylline and 6-thiotheobromine with P_2S_5 under refluxing dry pyridine, whereas caffeine was recovered unchanged after prolonged treatment with the same reagent. These results are rationalized in terms of theophylline and theobromine having at least one enolizable oxo groups, whereas caffeine is lacking these groups. This behavior has been confirmed in our laboratory. An attempt was made to prepared 7-β-D-(2, 3, 4, 6-tetra-O-acetyl)glucopyranosyl-8-methyl-thio-theophylline, $2a$, from 7-β-D-(2, 3, 4, 6-tetra-O-acetyl)glucopyranosyl-8-methyl-theophylline, $1a$, by treatment with P_2S_5 in dry pyridine, but the starting material was recovered unchanged after 2 days under refluxing conditions.

In 1978, Lawesson and co-workers began to study the conversion of the carbonyl groups in thio-carbonyl compounds using 2,4-(p-methoxy-phenyl)1,3-dithia-2,4-diposphetane-2,4-disulphide. The results of this study demonstrate that this reagent, now known as Lawesson's Reagent (LR), is an exceptionally good thiolating compound, and as such it has been widely used.
responding theophylline nucleosides by treatment with LR in refluxing toluene.\(^7\)

Scheme I

![Diagram showing structures 1 and 2](image)

1

2

1a and 2a, GLY = 8-D-(2, 3, 4, 6-tetra-O-acetyl)glucopyranosyl

1b and 2b, GLY = 8-D-(2, 3, 4, 6-tetra-O-acetyl)galactopyranosyl

Structure of 1a and 1b are similar to that of caffeine without enolizable oxo groups. Thus 1a, obtained according to the methods previously reported,\(^8\) gave 7-β-D-(2, 3, 4, 6-tetra-O-acetyl)glucopyranosyl-8-methyl-6-thio-theophylline, 2a, in a 70% yield, as a yellow solid, uv (CHCl\(_3\)),\(\text{max} 340\text{ nm (ε 15 000)}\), mp 98 °C, \([\alpha]_D^{27} +82\text{ (c 1, CHCl}_3\)). The ms spectrum (EI 70 eV) shows \(M^+ = 540\), which indicates the substitution of only one atom of oxygen by one atom of sulphur. The \(^1\)H-nmr spectrum (200 MHz, CDCl\(_3\)) shows a doublet at 8.19 ppm (J = 10 Hz) assigned to H-1'. This signal appears in 1a at 6.50 ppm, which represents a down field shift of 1.69 ppm.

The down field shift has been observed previously in thionucleosides and can be attributed to the anisotropic effect of the thiocarbonyl group.\(^9\) Another characteristic of the \(^1\)H-nmr spectrum is that all of the signal are sharp, in contrast to those in the spectrum of 1a, where the signals corresponding to the sugar moiety and the signal of the methyl group on C-8 are broad. The observed peak broadening in the spectrum of 1a is due to the existence of two conformers and a partially restricted rotation along the C-1'/N-7 bond caused by the molecular steric hindrance, whereas in 2a the rotation is completely restricted by the considerable larger volume of the sulphur atom. A detailed study of the conformations of these and related compounds will be reported in the near future.

In the \(^{13}\)C-nmr spectrum (Table II) the most significant difference between 1a and 2a is the shift of the 21.3 ppm for C-6 which proves the substitution of the oxygen atom on this carbon by sulphur.
In the same manner, 7-8-D-(2, 3, 4, 6-tetra-O-acetyl)galactopyranosyl-8-methyl-theophylline, \(\text{Ib} \), afforded 7-8-D-(2, 3, 4, 6-tetra-O-acetyl)galactopyranosyl-8-methyl-thio-theophylline, \(\text{2b} \), \(\text{uv} \) (CHCl\(_3\)) \(\lambda_{\text{max}} \) 360 nm (c 12 200), mp 116 °C, \([\alpha]_D^{27} \) +107 (c 1, CHCl\(_3\)), EIMS (70 eV) m/z 540 (M\(^+\)). The \(^1\)H-nmr spectrum (200 MHz, CDCl\(_3\)) shows H-1' at 8.28 ppm (d, J = 10 Hz) and the \(^{13}\)C-nmr spectrum (50 MHz, CDCl\(_3\)) gives a signal at 175.6 ppm corresponding to C-6 of the heterocycle which confirms the oxygen-sulphur substitution. In this case there is no peak broadening in the \(^1\)H-nmr spectrum of \(\text{Ib} \), because the rotation along C-1'/N-7 is totally restricted due to the axial acetate on C-4'.

O-deacetylation of both \(\text{2a} \) and \(\text{2b} \) with NaMeO/MeOH afforded quantitatively 7-8-D-glucopyranosyl-8-methyl-6-thio-theophylline, \(\text{3a} \) [\(\text{uv} \) (MeOH) \(\lambda_{\text{max}} \) 350 nm (c 19 800), mp 258 °C, \([\alpha]_D^{26} \) +155 (c 0.4, MeOH), EIMS (70 eV) m/z 372 (M\(^+\), 2%) 210 (100%), \(^1\)H-nmr (200 MHz, DMSO-d\(_6\)) 7.60 ppm (d, 1H, J = 10 Hz, H-1')], and 7-8-D-galactopyranosyl-8-methyl-6-thio-theophylline, \(\text{3b} \) [\(\text{uv} \) (MeOH) \(\lambda_{\text{max}} \) 350 nm (c 18 750), mp 241 °C, \([\alpha]_D^{26} \) +181 (c 0.4, MeOH), EIMS (70 eV) m/z 372 (M\(^+\), 4%) 210 (100%), \(^1\)H-nmr (200 MHz, DMSO-d\(_6\)) 7.52 ppm (d, 1H, J = 10 Hz, H-1')].
To our knowledge, this is the first report of a successful direct thiation of a purin nucleoside with non enolizable oxo groups. Further studies with 6-thio-theophylline nucleosides are in good progress.

ACKNOWLEDGEMENTS
To CAICYT for its financial support and to Prof. R. Suau for the useful discussion.

REFERENCES AND NOTES
2 W. Traube, Ann., 1904, 331, 64.
7 1 mM of LR for 1 mM of the nucleoside. The reaction was monitored by tlc. One more mM of LR was added in several times until complete disappearance of the starting material (48 h). The toluene was removed under reduced pressure, the residual product was separated and purified by cc on silica gel (eluent: gradient CHCl₃ to CHCl₃/MeOH 1:1), followed by crystallization from MeOH.

Received, 5th August, 1987