AN EFFICIENT SYNTHESIS OF (+)-3-DEMETHOXYERYTHRATIDINONE

Hiroyuki Ishibashi,* Tatsunori Sato, Masako Takahashi, Mayumi Hayashi, and Masazumi Ikeda
Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607, Japan

Abstract—(+)-3-Demethoxyerythratidinone (10), an alkaloid of Erythrina lithosperma, was synthesized in nine steps and 37% overall yield from homoveratrylamine and cyclohexane-1,4-dione monoethylene acetal.

Previous accounts from our laboratory have revealed a direct access to the erythrinan skeleton by acid-promoted double cyclization of N-arylethyl-N-(cyclohex-1-enyl)-α-sulfinylacetamides. We have now applied this method to the total synthesis of (+)-3-demethoxyerythratidinone (10), an alkaloid isolated from Erythrina lithosperma in 1973 by Barton and colleagues.

The key sulfoxide 5 was synthesized from homoveratrylamine (1) and cyclohexane-1,4-dione monoethylene acetal (2) in three steps. Thus, heating a mixture of 1 and 2 in benzene with azeotropic removal of water followed by treatment of the resulting imine 3 in situ with (methylthio)acetic anhydride and pyridine afforded the acylenamide 4, mp 89-90°C (from n-hexane-benzene), in 75% yield. Oxidation of 4 with sodium metaperiodate in aqueous methanol provided quantitatively the sulfoxide 5 as an oil.

Cyclization of 5 was effected by heating with 2 molar equiv. of p-toluenesulfonic acid in benzene with azeotropic removal of water for 10 min to give two erythrinan derivatives 6 and 7 in 19 and 53% yields, respectively. Reprotection of the ketone 7 with ethylene glycol by an usual manner gave quantitatively the acetal 6.

Oxidation of 6 with sodium metaperiodate followed by thermolysis of the resulting sulfoxide in refluxing toluene in the presence of NaHCO₃ for 7 h afforded, in 80% overall yield, the unsaturated lactam 8, mp 132-133°C (from ethyl ether), lit. 133-135°C.
According to the reported procedure, compound 8 was subjected to reduction with LiAlH$_4$-AlCl$_3$ in tetrahydrofuran-ethyl ether (5:2) at room temperature for 1 h to give the amine 9. This compound was then deprotected with 5% HCl-acetone at 50°C to furnish, with concomitant migration of the double bond, (±)-3-demethoxyerythratidinone (10), mp 103-104°C (from benzene-light petroleum), lit. 101-102°C, in 86% yield from 8. The ir (CHCl$_3$) and 1H-nmr (CDCl$_3$) spectra of 10 were identical with those of a reference sample provided by Professor Tsuda. Thus we succeeded in the synthesis of (±)-3-demethoxyerythratidinone (10) in nine chemical operations and 37% overall yield from homoveratrylamine (1) and cyclohexane-1,4-dione monoethylene acetal (2).

ACKNOWLEDGEMENT

We thank Professor Yoshisuke Tsuda, Kanazawa University, for providing ir and 1H-nmr spectra of the compound 8 and (±)-3-demethoxyerythratidinone (10), and also for giving us helpful experimental suggestions.

REFERENCES

5. mp 170-171°C (from n-hexane-ethyl acetate); ir (v, cm$^{-1}$, CHCl$_3$) 1680; 1H-nmr (δ, ppm, 300 MHz, CDCl$_3$) 1.72 (1H, ddd, J=14.0, 7.0, 4.5 Hz), 1.88 (1H, ddd, J=14.0, 8.2, 5.8 Hz), 2.03-2.11 (2H, m), 2.09 (3H, s, SMe), 2.26-2.30 (2H, m), 2.48 (1H, ddd, J=9.5, 5.5, 3.8 Hz), 2.76 (1H, ddd, J=16.0, 6.0, 3.8 Hz), 2.94 (1H, ddd, J=16.5, 10.0, 7.0 Hz), 3.26 (1H, ddd, J=13.3, 10.0, 5.8, 1.0 Hz), 3.86 (3H, s, OMe), 3.88 (3H, s, OMe), 3.91-4.06 (4H, m, OCH$_2$CH$_2$O), 4.00 (1H, d, J=5.0 Hz, SCH), 4.14 (1H, ddd, J=13.0, 6.8, 4.0 Hz), 6.62 (1H, s, arom.), 6.83 (1H, s, arom.).
6. mp 112-113°C (from n-hexane-ethyl acetate); ir (v, cm$^{-1}$, CCL$_4$) 1725 (six-
membered ketone), 1695 (five-membered lactam); 1H-nmr (δ, ppm, 60 MHz, CDCl$_3$) 2.06 (3H, s, SMc), 2.34 (4H, br s), 2.5-4.1 (7H, m), 3.85 (3H, s, OMe), 3.89 (3H, s, OMe), 4.15-4.65 (1H, m), 6.58 (1H, s, arom.), 6.68 (1H, s, arom.).

7. IR (ν, cm$^{-1}$, CHCl$_3$) 1670; 1H-nmr (δ, ppm, 60 MHz, CDCl$_3$) 1.2-4.5 (10H, m), 3.86 (3H, s, OMe), 3.88 (3H, s, OMe), 4.02 (4H, s, OCH$_2$CH$_2$O), 5.97 (1H, br s, C=CH), 6.72 (1H, s, arom.), 7.02 (1H, s, arom.).

9. an oil; 1H-nmr (δ, ppm, 60 MHz, CDCl$_3$) 1.5-4.2 (12H, m), 3.85 (6H, s, OMe x 2), 3.99 (4H, s, OCH$_2$CH$_2$O), 5.55-5.75 (1H, br, C=CH), 6.64 (1H, s, arom.), 7.0 (1H, s, arom.).

10. IR (ν, cm$^{-1}$, CHCl$_3$) 1665, 1610, 1505, 1250; 1H-nmr (δ, ppm, 60 MHz, CDCl$_3$) 2.0-3.7 (12H, m), 3.74 (3H, s, OMe), 3.85 (3H, s, OMe), 6.09 (1H, m, C=CH), 6.57 (1H, s, arom.), 6.66 (1H, s, arom.).

Received, 29th July, 1988