A CONVENIENT SYNTHESIS OF 3-HETEROARYLTHIOMETHYL-1H,8H-CYCLOHEPTA[d]PYRAZOL-8-ONES

Itisuko Kishi, Kimiaki Imafuji, Kazuo Ogawa, and Yoh-ichi Matsushita

Department of Chemistry, Faculty of Science, Kumamoto University,
Kurokami, Kumamoto 860, Japan
+ Research Institute, Taiho Pharmaceutical Co., Ltd., Kawauchi-cho,
Tokushima 771-01, Japan

Abstract — The reactions of 3-(bromoacetyl)tropolone (1) with benzenethiol (2a) and heteroaromatics (2b-4) gave 3-[(phenylthio)acetyl]tropolone (3a) and 3-[(heteroarylthio)acetyl]tropolones (3b-4), respectively. These compounds (3a-4) reacted with hydrazine hydrate and methylhydrazine to afford 3-phenylthiomethyl- (4a) and 3-heteroaryltolmethyl-1H,8H-cyclohepta[d]pyrazol-8-ones (4b-4) and their corresponding 1-methyl substituted compounds (3b-4), respectively.

For many years, we have engaged in the synthesis of heterocycle-fused tronopoids from 3-acetyl tropolone. Recently, gastric antisecretory effect has been found in 2-(heteroarylthiol)imidazo[1,5-a]pyridazines and their S-oxides, which have the five-membered diazaheterocycle-fused tropoid structure. On the other hand, their partial structure is very similar to that of omeprazole, 5-methoxy-2-{(4-methoxy-3,5-dimethyl-2-pyridyl)methyl[sulfanyl]-1H-benimidazole, which is undergoing the clinical trial as an anti-ulcer agent. In order to obtain biologically more active heterocycle-fused non-benzenoid aromatic compounds, we introduced heteroaryltolmethyl group into the 3-position of 1H,8H-cyclohepta[d]pyrazol-8-one. This paper deals with these results.

It is well-known that treatment of α-halo ketones with thiols gives α-alkylthio or α-aryltio ketones. A mixture of 3-(bromoacetyl) tropolone (1) and benzenethiol (2a) in absolute ethanol was refluxed for 30 min to give 3-[(phenylthio)acetyl]tropolone (3a) in 48% yield. Heteroarenenethiols (2b-4) also reacted...
with the α-bromoketone (1) to afford the corresponding 3-[(heteroarlyithio)acetyl]tropolones (3b-f) in 51-87% yields. Heating of these compounds (3a-f) with hydrazine hydrate for 1 h in methanol gave 3-phenylthio-methyl- (4a) and 3-heteroarylthiomethyl-1H,8H-cyclohepta[d]pyrazol-8-ones (4b-f) in 21-76% yields. In a similar manner, the reaction of the compounds (3b-f) with methylhydrazine gave 3-heteroarylthiomethyl-1-methyl derivatives (5b-f) in 20-32% yields. The procedure in this work provides a simple and convenient method for the preparation of a series of biologically active 3-heteroarylthiomethyl substituted 1H,8H-cyclohepta[d]pyrazol-8-ones.

Scheme 1

EXPERIMENTAL

The melting points were determined with a Yanagimoto MP-S2 apparatus and are uncorrected. The ir spectra were taken on a JASCO A-102 spectrophotometer. The 1H nmr spectra were recorded with a JEOL JNM-PMX60S1 spectrometer (60 MHz). The mass spectra were measured on a JEOL JMX-DX303HF spectrometer.

3-[(Phenylthio)acetyl]- (3a) and 3-[(Heteroarlyithio)acetyl]tropolones (3b-f): General Procedure:

A solution of 3-(bromoacetyl)tropolone (1) (1.22 g, 5.0 mmol) and benzenethiol (2a) or heteroarenethiol (2b-f) (5.0 mmol) in absolute ethanol (40 ml) was refluxed for 30 min. After cooling, the precipitates were collected and recrystallized from ethanol to give 3a or 3b-f.
Yellow prisms (from EtOH); yield 631 mg (48%); mp 106-107 °C; ir (CHCl₃) ν 3125 (OH), 1695 (C=O), 1620 cm⁻¹ (C=O); ¹H nmr (CDCl₃) δ 4.41 (2H, s, CH₂), 8.61-7.78 (10H, m); ms m/z 272 (M⁺). Anal. Calcd for C₁₃H₁₁O₃S: C, 66.10; H, 4.41; Found: C, 66.16; H, 4.44. Found: C, 66.10; H, 4.57.

Yellow prisms (from EtOH); yield 919 mg (64%); mp 180-183 °C; ir (CHCl₃) ν 3424 (OH), 1686 (C=O), 1600 cm⁻¹ (C=O); ¹H nmr (CDCl₃) δ 5.20 (2H, s, CH₂), 7.10-8.06 (9H, m); ms m/z 273 (M⁺). Anal. Calcd for C₁₃H₁₁NO₃S: C, 61.52; H, 4.06; N, 5.13; Found: C, 61.35; H, 4.34; N, 5.32.

Yellow prisms (from EtOH); yield 1.26 g (87%); mp 223-225 °C; ir (CHCl₃) ν 3664 (OH), 1747 (C=O), 1589 cm⁻¹ (C=O); ¹H nmr (CDCl₃) δ 4.87 (2H, s, CH₂), 6.30-8.07 (5H, m), 7.85 (2H, d, J = 6 Hz, H-3', H-5'), 8.65 (2H, d, J = 6 Hz, H-2', H-6'); ms m/z 273 (M⁺). Anal. Calcd for C₁₃H₁₁NO₃S: C, 61.52; H, 4.06; N, 5.13; Found: C, 61.49; H, 4.07; N, 5.41.

Yellow prisms (from EtOH); yield 1.10 g (81%); mp 192 °C; ir (CHCl₃) ν 3320 (OH), 3108 (NH), 1664 (C=O), 1591 cm⁻¹ (C=O); ¹H nmr (CDCl₃) δ 4.85 (2H, s, CH₂), 7.11-8.15 (8H, m); ms m/z 262 (M⁺). Anal. Calcd for C₁₃H₁₁NO₃S: C, 54.95; H, 3.84; N, 10.68; Found: C, 54.65; H, 4.11; N, 10.92.

Yellow prisms (from EtOH); yield 1.40 g (87%); mp 180-183 °C; ir (CHCl₃) ν 3424 (OH), 3104 (NH), 1686 (C=O), 1600 cm⁻¹ (C=O); ¹H nmr (CDCl₃) δ 5.20 (2H, s, CH₂), 7.10-8.06 (10H, m); ms m/z 312 (M⁺). Anal. Calcd for C₁₄H₁₂N₂O₃S: C, 58.34; H, 3.37; N, 8.97; Found: C, 61.56; H, 3.98; N, 9.27.

Yellow prisms (from EtOH); yield 777 mg (51%); mp 86-88 °C; ir (CHCl₃) ν 3125 (OH), 1705 (C=O), 1620 cm⁻¹ (C=O); ¹H nmr (CDCl₃) δ 4.78 (2H, s, CH₂), 6.77-7.91 (8H, m), 8.55 (1H, br, OH); ms m/z 329 (M⁺). Anal. Calcd for C₁₄H₁₂NO₃S: C, 58.34; H, 3.37; N, 4.25; Found: C, 58.21; H, 3.53; N, 4.28.

3-Phenythioacetil- (4a) and 3-Heteroarythioacetil-1H,8H-cyclohepta[d]pyrazol-8-ones (4a-f); General Procedure:

A solution of 3-[phenylthioacetyl]- (3a) or 3-[heteroarythioacetyl]tropolone (3b-f) (2.5 mmol) and 100% hydrazine hydrate (250 mg, 5.0 mmol) in methanol (10 ml) was refluxed for 1 h. After removal of the solvent, the residue was recrystallized to give 4a and 4b-f.

Orange prisms (from EtOH); yield 175 mg (27%); mp 117-118 °C; ir (CHCl₃) ν 3180 (NH), 1630 cm⁻¹ (C=O); ¹H nmr (CDCl₃) δ 4.46 (2H, s, CH₂), 6.40-7.80 (10H, m); ms m/z 268 (M⁺). Anal. Calcd for C₁₃H₁₂NO₃S: C, 67.14; H, 4.51; N, 10.44; Found: C, 66.98; H, 4.73; N, 10.56.

Light orange prisms (from benzene);
yield 405 mg (59%); mp 159-160 °C; ir (CHC13) ν 3148 (NH), 1626 cm⁻¹ (C=O); ¹H nmr (CDCl₃) δ 4.87 (2H, s, CH₂), 6.63-8.10 (8H, m), 8.50 (1H, dd, J = 5, 2 Hz, H-6'); ms m/z 269 (M⁺).

Anal. Calcd for C₁₄H₁₄N₂O₅: C, 62.43; H, 4.34; N, 15.56.

1-Methyl-3-(2-pyridylii)thiomethyl-1H,8H-cycloheptad[1]pyrazol-8-one (5b). Light orange prisms (from benzene); yield 152 mg (21%); mp 193-194 °C; ir (CHCl₃) ν 3150 (NH), 1620 cm⁻¹ (C=O); ¹H nmr (CDCl₃) δ 4.63 (2H, s, CH₂), 6.30-7.90 (5H, m), 7.37 (2H, d, J = 6 Hz, H-3', H-5'), 8.42 (2H, d, J = 6 Hz, H-2', H-6'); ms m/z 269 (M⁺).

Anal. Calcd for C₁₄H₁₄N₂O₅: C, 62.43; H, 4.34; N, 15.56.

3-(2-Benzimidazolyl)thiomethyl-1H,8H-cycloheptad[1]pyrazol-8-one (4d). Orange prisms (from benzene); yield 135 mg (21%); mp 189-190 °C; ir (CHCl₃) ν 3156 (NH), 1622 cm⁻¹ (C=O); ¹H nmr (CDCl₃) δ 4.91 (2H, s, CH₂), 6.71-8.06 (10H, m); ms m/z 308 (M⁺).

3-Heteroarylthiomethyl-1H,8H-cycloheptad[1]pyrazol-8-ones (5b-f): General Procedure:
A solution of 3-[(heteroarylthio)acetyl]tripropylene (5b-f) (1.0 mmol) and methylhydrazine (92 mg, 2.0 mmol) in methanol (10 ml) was refluxed for 2 h. After removal of the solvent, the residue was separated by preparative thin layer chromatography [Wakoel B-10 (35 g) on 30 x 30 cm] with ethyl acetate and the major product was recrystallized to give 5b-f.

1-Methyl-3-[(2-pyridyl)thiomethyl]-1H,8H-cycloheptad[1]pyrazol-8-one (5b). Light orange prisms (from hexane); yield 84 mg (30%); mp 98-99 °C; ir (CHCl₃) ν 1633 cm⁻¹ (C=O); ¹H nmr (CDCl₃) δ 4.40 (3H, s, CH₃), 4.73 (2H, s, CH₂), 6.37-7.77 (7H, m), 8.49 (1H, dd, J = 5, 2 Hz, H-6'); ms m/z 283 (M⁺).

1-Methyl-3-[(4-pyridyl)thiomethyl]-1H,8H-cycloheptad[1]pyrazol-8-one (5c). Light brown prisms (from benzene); yield 74 mg (25%); mp 135-136 °C; ir (CHCl₃) ν 1638 cm⁻¹ (C=O); ¹H nmr (CDCl₃) δ 4.20 (3H, s, CH₃), 4.76 (2H, s, CH₂), 6.30-7.46 (4H, m), 7.09 (2H, d, J = 6 Hz, H-3', H-5'), 8.29 (2H, d, J = 6 Hz, H-2', 6'); ms m/z 283 (M⁺).

Anal. Calcd for C₁₄H₁₂N₂O₅: C, 63.58; H, 4.62; N, 14.83. Found:
3-(2-Imidazolyl)thiomethyl-1-methyl-1H,3H-cyclohepta[d]pyrazol-8-one (3d). Brown prisms (from MeOH); yield 77 mg (29%); mp 157-160 °C; ir (CHCl₃) ν 3125 (NH), 1633 cm⁻¹ (C=O); ¹H nmr (CDCl₃) δ 4.30 (3H, s, CH₃), 4.52 (2H, s, CH₂), 6.50-7.56 (7H, m); ms m/z 272 (M⁺). Anal. Calcd for C₁₅H₁₅N₅O: C, 57.33; H, 4.44; N, 20.52. Found: C, 57.07; H, 4.25; N, 20.81.

3-(2-Benzimidazolyl)thiomethyl-1-methyl-1H,3H-cyclohepta[d]pyrazol-8-one (3f). Orange prisms (from benzene); yield 61 mg (20%); mp 107-108 °C; ir (CHCl₃) ν 3150 (NH), 1630 cm⁻¹ (C=O); ¹H nmr (CDCl₃) δ 4.61 (3H, s, CH₃), 5.22 (2H, s, CH₂), 6.84-8.21 (9H, m); ms m/z 322 (M⁺). Anal. Calcd for C₁₅H₁₅N₅O: C, 63.33; H, 4.38; N, 17.38. Found: C, 63.12; H, 4.61; N, 17.52.

3-(2-Benzothiazolyl)thiomethyl-1-methyl-1H,3H-cyclohepta[d]pyrazol-8-one (3f). Orange prisms (from benzene); yield 119 mg (32%); mp 129-130 °C; ir (CHCl₃) ν 1625 cm⁻¹ (C=O); ¹H nmr (CDCl₃) δ 4.72 (3H, s, CH₃), 5.22 (2H, s, CH₂), 6.76-8.29 (8H, m); ms m/z 339 (M⁺). Anal. Calcd for C₁₅H₁₅N₅OS: C, 60.15; H, 3.86; N, 12.38. Found: C, 59.94; H, 3.91; N, 12.28.

REFERENCES

Received, 22nd January, 1990