STEREOSELECTIVE SYNTHESIS OF 1-INDANYLIDENE SUBSTITUTED HETEROAROMATIC DERIVATIVES VIA Pd-CATALYZED TANDEM INSERTION AND CROSS COUPLING REACTIONS

Fen-Tair Luo* and Ren-Tzong Wang
Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan, R.O.C.

Abstract - Treatment of 4-(o-iodophenyl)-1-butyne with a variety of heteroarylzinc chlorides in the presence of a catalytic amount of Pd(PPh₃)₄ gave (Z)-1-indanylidene substituted heteroaromatics in moderate to good yields with high Z-selectivities.

The palladium-catalyzed reactions of either alkynes and alkenes with organic halides or organozinc chlorides with organic halides have been extensively studied to provide a good approach to form carbon-carbon bond.⁴ Although particular attention has been paid to the former type reaction, also known as "Heck reaction", the number of papers reporting the potential utility of the Pd(II)-intermediate, obtained from the insertion of alkyne group, are still very small.⁵-¹²

Recently we have found that the Pd(II)-intermediate obtained in situ from intramolecular arylation of alkynes can be further cross coupled with phenylzinc chloride and gave stereo-defined exocyclic indan and tetralin derivatives.¹³ The undesired coupling products were obtained only in 2-25% yields.

We now report that a variety of heteroarylzinc chlorides can indeed be readily cross coupled with the Pd(II)-intermediate, obtained rapidly from 4-(o-iodophenyl)-1-butyne(1) and a catalytic amount of Pd(PPh₃)₄, to give (Z)-1-indanylidene substituted heteroaromatics in moderate to good yields. As representative heteroaromatics 2- and 3-pyridyl, 2-furyl, 2-thienyl, 2-N-methylpyrrolyl, and 2-benzothiazolyl were chosen. As indicated by the structures of the products(2) to 7 as well as by the results summarized in the Table I, syntheses of the stereo-defined 1-indanylidene substituted systems can now be readily achieved by the Pd-catalyzed intramolecular insertion and cross coupling processes. Their stereochemistry was again determined by their ¹H-nmr as well as 2D NOESY.
Table I. The Reaction of 1 with Heteroarylzinc Chlorides in the Presence of Pd(0) Catalyst

<table>
<thead>
<tr>
<th>Entry</th>
<th>Heteroarylzinc Chloride a</th>
<th>Product</th>
<th>Yield b (%)</th>
<th>Byproduct (%) b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
<td>2</td>
<td>66</td>
<td>trace</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>3</td>
<td>53</td>
<td>trace</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>4</td>
<td>58</td>
<td>8 (28)</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>5</td>
<td>74</td>
<td>9 (6)</td>
</tr>
<tr>
<td>5</td>
<td>N</td>
<td>6</td>
<td>52</td>
<td>10 (33)</td>
</tr>
<tr>
<td>6</td>
<td>N</td>
<td>7</td>
<td>70</td>
<td>11 (21)</td>
</tr>
</tbody>
</table>

a Heteroarylzinc chlorides were prepared by treating the corresponding organolithium with one equivalent of dry ZnCl$_2$ in THF.

b Isolated yields of pure products.

spectral analyses. While the yield of uncyclized products obtained from either 2-pyridyl- or 3-pyridylzinc chloride is only trace amount, the isolated yields of uncyclized products (8-11) are between 6-33%.

On the basis of the current study, it is clear that this methodology could be extended to the preparation of other valuable derivatives of stereo-defined and carbo-substituted heteroaromatics. In fact, until the present time, the preparation of (Z)-1-indanylidene substituted heteroaromatics has rarely been reported. 14
EXPERIMENTAL SECTION

Melting points are uncorrected. Precoated silica gel 60F-254 on aluminum plates made by EM Chemical Company were used for thin layer chromatography. Purification by column chromatography was carried out with EM Reagents silica gel 60 (70-230 mesh ASTM). Glc analyses were performed on a 3.2 m x 3.1 mm column packed with SE-30 (5% on chromosorb W). The purity of all title compounds was judged to be >95% by gc, 'H-nmr, as well as 13C-nmr spectra analysis. Zinc chloride was dried before use at 100°C at 1 mmHg for 3 h. Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl immediately prior to use.

(Z)-2-(1-Indanylidenemethyl)pyridine 2. A Representative Procedure for Pd-
Catalyzed Stereoselective Synthesis of 1-Indanylidene Substituted Heteroaromatics via Insertion and Cross Coupling Reactions. To a mixture of 4-(o-iodo-
phenyl)-1-butyne (0.77 g, 3 mmol) in 5 ml of THF were sequentially added
Pd(PPh3)2 (0.17 g, 0.15 mmol) in 2 ml of THF and 2-pyridylzinc chloride solution, prepared by mixing 2-pyridyllithium15 (9 ml of 1 N in THF) and zinc chloride solution (9 ml of 1 N in THF) at 0°C, over a period of 2 h. The reaction mixture was then stirred at room temperature for another 8 h. The reaction mixture was quenched by adding water (10 ml) at 0°C and the organic layer was extracted with diethyl ether (20 ml x 3). The combined organic layer was washed with water (10 ml) and brine (10 ml), dried over magnesium sulfate, filtered, concentrated, and purified by column chromatography (hexane/ether = 10/1) to give 2 (0.41 g, 1.98 mmol) as a colorless liquid in 66% yield and trace (<2%) amount of the uncyclized product 2-[2-(3-butylnyl)phenyl]pyridine. 2:

'H-Nmr (CDCl3, TMS) δ 2.9-3.1 (m, 4 H), 6.63 (s, 1 H), 7.03 (dt, J = 0.7, 7.8 Hz, 1 H), 7.1-7.3 (m, 3 H), 7.39 (d, J = 7.8 Hz, 1 H), 7.64 (dt, J = 1.8, 7.8 Hz, 1 H), 7.77 (d, J = 7.8 Hz, 1 H), 8.64 (d, J = 4.8 Hz, 1 H) ppm. 13C-Nmr (CDCl3, TMS) δ 29.96, 35.01, 120.86, 121.15, 123.64, 125.07, 125.34, 125.68, 128.72, 135.89, 146.87, 149.17, 156.75 ppm. Ir (neat) ν 1580, 1425, 755 cm⁻¹. Ms m/z 207 (M⁺). Hrms calcd for C19H13N: 207.1048, found 207.1048. Anal. Calcd for C19H13N: C, 86.92; H, 6.32; N, 6.76. Found: C, 86.68; H, 6.09; N, 6.98.

(Z)-3-(1-Indanylidenemethyl)pyridine 3: 53% Yield. Colorless oil. 1H-Nmr
(CDCl3, TMS) δ 2.9-3.1 (m, 4 H), 6.52 (s, 1 H), 6.95 (t, 7.2 Hz, 1 H), 7.1-7.3 (m, 4 H), 7.69 (d, J = 7.5 Hz, 1 H), 8.51 (dd, J = 1.7, 4.8 Hz, 1 H), 8.6-8.7
(m, 1 H) ppm. \(^{13}\)C-Nmr (CDCl\(_3\), TMS) \& 30.02, 34.18, 117.13, 123.11, 123.91, 125.44, 125.88, 128.55, 134.03, 135.74, 138.97, 145.79, 147.68, 148.94, 149.70 ppm. Ir (neat) \& 765, 710 cm\(^{-1}\). Ms m/z 207 (M'). Hrms calcd for C\(_{13}\)H\(_{13}\)N 207.1048, found 207.1038. Anal. Calcd for C\(_{13}\)H\(_{13}\)N: C, 86.92; H, 6.32; N, 6.76. Found: C, 86.65; H, 6.01; N, 6.82.

(Z)-2-(1-Indanyldienemethyl)furan 4: 58% Yield. Colorless oil. \(^{1}\)H-Nmr (CDCl\(_3\), TMS) \& 2.8-3.1 (m, 4 H), 6.3-6.4 (m, 2 H), 6.4-6.5 (m, 1 H), 7.1-7.3 (m, 3 H), 7.45 (t, J = 0.7 Hz, 1 H), 8.1-8.2 (m, 1 H) ppm. \(^{13}\)C-Nmr (CDCl\(_3\), TMS) \& 29.95, 35.33, 108.89, 109.03, 111.18, 124.92, 126.08, 128.29, 139.06, 140.91, 142.44, 148.92, 152.35 ppm. Ir (neat) \& 765, 725 cm\(^{-1}\). Ms m/z 196 (M'). Hrms calcd for C\(_{14}\)H\(_{12}\)O 196.0888, found 196.0884. Anal. Calcd for C\(_{14}\)H\(_{12}\)O: C, 85.68; H, 6.16. Found: C, 85.37; H, 6.28.

(Z)-2-(1-Indanyldienemethyl)thiophene 5: 74% Yield. Colorless oil. \(^{1}\)H-Nmr (CDCl\(_3\), TMS) \& 2.9-3.0 (m, 4 H), 6.53 (br s, 1 H), 7.0-7.1 (m, 3 H), 7.17 (dt, J = 1.1, 7.5 Hz, 1 H), 7.2-7.3 (m, 2 H), 7.49 (d, J = 7.8 Hz, 1 H) ppm. \(^{13}\)C-Nmr (CDCl\(_3\), TMS) \& 29.97, 34.13, 113.10, 124.33, 124.47, 125.19, 125.73, 125.83, 127.02, 128.40, 139.15, 140.32, 145.83, 148.79 ppm. Ir (neat) \& 850, 755, 695 cm\(^{-1}\). Ms m/z 212 (M'). Hrms calcd for C\(_{14}\)H\(_{12}\)S 212.0660, found 212.0663. Anal. Calcd for C\(_{14}\)H\(_{12}\)S: C, 79.20; H, 5.70. Found: C, 79.03; H, 5.51.
2-[2-(3-Butynyl)phenyl]furan 8: 28% Yield. Colorless oil. \(^1H \)-Nmr (CDCl\textsubscript{3}, TMS) \(\delta 1.98 \) (t, \(J = 2.6 \) Hz, 1 H), 2.47 (dt, \(J = 2.6, 7.5 \) Hz, 2 H), 3.07 (t, \(J = 7.5 \) Hz, 2 H), 6.4-6.5 (m, 2 H), 7.2-7.3 (m, 3 H), 7.5-7.6 (m, 2 H) ppm. \(^{13}C \)-Nmr (CDCl\textsubscript{3}, TMS) \(\delta 19.72, 33.25, 68.68, 83.86, 108.04, 111.18, 126.52, 127.60, 128.23, 129.93, 130.25, 131.29, 153.47 \) ppm. Ir (neat) \(\nu 3300, 1010, 760, 740, 640 \) cm-1. Ms m/z 196 (M+). Hrms calcd for C\textsubscript{14}H\textsubscript{10}O: 196.0888, found 196.0878. Anal. Calcd for C\textsubscript{14}H\textsubscript{10}O: C, 85.68; H, 6.16. Found: C, 85.47; H, 6.29.

2-[2-(3-Butynyl)phenyl]thiophene 9: 6% Yield. Colorless oil. \(^1H \)-Nmr (CDCl\textsubscript{3}, TMS) \(\delta 1.95 \) (t, \(J = 2.6 \) Hz, 1 H), 2.39 (dt, \(J = 2.6, 7.2 \) Hz, 2 H), 2.98 (t, \(J = 7.2 \) Hz, 2 H), 7.0-7.1 (m, 2 H), 7.2-7.4 (m, 5 H) ppm. \(^{13}C \)-Nmr (CDCl\textsubscript{3}, TMS) \(\delta 20.01, 32.39, 68.78, 83.66, 125.34, 126.34, 126.44, 127.01, 128.05, 129.59, 131.19, 133.94, 138.73, 142.21 \) ppm. Ir (neat) \(\nu 3300, 760, 700, 640 \) cm-1. Ms m/z 212 (M+). Hrms calcd for C\textsubscript{14}H\textsubscript{10}S: 212.0661, found 212.0660. Anal. Calcd for C\textsubscript{14}H\textsubscript{10}S: C, 79.20; H, 5.70. Found: C, 79.01; H, 5.52.

2-(2-(3-Butynyl)phenyl)-N-methylpyrrole 10: 33% Yield. Colorless oil. \(^1H \)-Nmr (CDCl\textsubscript{3}, TMS) \(\delta 1.91 \) (t, \(J = 2.6 \) Hz, 1 H), 2.29 (dt, \(J = 2.6, 7.4 \) Hz, 2 H), 2.76 (t, \(J = 7.4 \) Hz, 2 H), 3.38 (s, 3 H), 6.07 (dd, \(J = 1.8, 3.6 \) Hz, 1 H), 6.20 (dd, \(J = 1.8, 2.7 \) Hz, 1 H), 6.70 (dd, \(J = 1.8, 2.7 \) Hz, 1 H), 7.2-7.4 (m, 4 H) ppm. \(^{13}C \)-Nmr (CDCl\textsubscript{3}, TMS) \(\delta 19.53, 32.24, 34.05, 68.64, 83.82, 107.27, 108.68, 121.64, 126.02, 128.03, 129.19, 131.54, 132.08, 132.78, 140.51 \) ppm. Ir (neat) \(\nu 3300, 1475, 1310, 760, 710, 640 \) cm-1. Ms m/z 209 (M+). Hrms calcd for C\textsubscript{15}H\textsubscript{12}N: 209.1204, found 209.1206. Anal. Calcd for C\textsubscript{15}H\textsubscript{12}N: C, 86.09; H, 7.22; N, 6.69. Found: C, 85.97; H, 7.20; N, 6.85.

2-[2-(3-Butynyl)phenyl]benzothiazole 11: 21% Yield. Colorless oil. \(^1H \)-Nmr (CDCl\textsubscript{3}, TMS) \(\delta 1.95 \) (t, \(J = 2.7 \) Hz, 1 H), 2.59 (dt, \(J = 2.7, 7.5 \) Hz, 2 H), 3.29 (t, \(J = 7.5 \) Hz, 2 H), 7.3-7.6 (m, 5 H), 7.71 (d, \(J = 7.2 \) Hz, 1 H), 7.94 (d, \(J = 7.8 \) Hz, 1 H), 8.10 (d, \(J = 8.4 \) Hz, 1 H) ppm. \(^{13}C \)-Nmr (CDCl\textsubscript{3}, TMS) \(\delta 20.21, 32.87, 68.74, 83.96, 121.26, 123.47, 125.12, 126.06, 126.74, 129.95, 132.78, 131.11, 132.68, 135.45, 139.60, 153.89 \) ppm. Ir (neat) \(\nu 3300, 1435, 960, 760, 710, 640 \) cm-1. Ms m/z 263 (M+). Hrms calcd for C\textsubscript{17}H\textsubscript{13}NS: 263.0769, found 263.0771. Anal. Calcd for C\textsubscript{17}H\textsubscript{13}NS: C, 77.53; H, 4.97; N, 5.32. Found: C, 77.40; H, 4.73; N, 5.50.
ACKNOWLEDGMENTS

The authors thank the National Science Council of the Republic of China for financial support.

REFERENCES

Received, 4th June, 1990

— 1548 —