SYNTHESIS OF N₄-BOC-5β-CYANO-DEFORMYL-E-GEISSOSCHIZINE: A POTENTIAL SYNTHON IN THE PREPARATION OF SARPAGAN AND AJMALAN RING SYSTEMS

Reija Jokela, Minna Halonen, and Mauri Lounasmaa

Laboratory for Organic and Bioorganic Chemistry,
Technical University of Helsinki, FIN-02150 Espoo, Finland

Abstract - The paper describes a short, synthetic route to N₄-BOC-5β-cyano-deformyl-E-geissoschizine (8), a prototype of potential synthons in the preparation of sarpagan and ajmalan ring systems.

INTRODUCTION

In the course of efforts to find feasible synthetic approaches to sarpagin ajmalin-type indole alkaloids,¹,² it became evident to us that an easy method that would permit a regioselective formation of Δ⁴₀⁻iminium ions (or their equivalents) from appropriate indolo[2,3-a]quinolizidine (1) derivatives was a prerequisite for a successful accomplishment of our goal.
We have previously shown3 that the formation of particular indolo[2,3-\textit{a}]quinolizidine iminium ions by the modified Polonovski reaction4,8 strongly depends on whether the intermediate indolo[2,3-\textit{a}]quinolizidine N\textsubscript{5}-oxide is \textit{cis} (2) or \textit{trans} (3). Thermodynamically the most stable iminium ion will be formed as the main product when stereoelectronic requirements for E2-type \textit{trans}-dialylic elimination are fulfilled. As a consequence, \textit{cis}-N\textsubscript{5}-oxides should be more favourable than \textit{trans}-N\textsubscript{5}-oxides to the formation of \(\Delta^{5\text{60}}\)-iminium ions. Recently we developed a procedure that permits the oxidation of indolo[2,3-\textit{a}]quinolizidines to \textit{cis}- or \textit{trans}-N\textsubscript{5}-oxides to be directed at will.9

Thus, the time appeared ripe for a more detailed study of the preparation of indolo[2,3-\textit{a}]quinolizidine \(\Delta^{5\text{60}}\)-iminium ions (4) (IUPAC numbering10) (or their equivalents), in particular from indolo[2,3-\textit{a}]quinolizidine derivative possessing an \(\textit{E}\)-ethylidene side-chain at C-3 (compound 5), as do many of the indole alkaloids. Significantly, the C-3 \(\textit{E}\)-ethylidene side-chain (in biogenetic numbering,10 C-20 \(\textit{E}\)-ethylidene side-chain) usually strongly favours the \(\Delta^{4\text{65}}\)-iminium ion (6) (IUPAC numbering) (in biogenetic numbering, \(\Delta^{4\text{60}}\)-iminium ion) formation (Scheme 1).

\begin{center}
\textbf{Scheme 1.} Formation of indolo[2,3-\textit{a}]quinolizidine \(\Delta^{5\text{60}}\)-iminium ion (4) and indolo[2,3-\textit{a}]quinolizidine \(\Delta^{4\text{65}}\)-iminium ion (6).
\end{center}

In the present paper we describe the transformation of deformyl-\textit{E}-geissoschizine (7) (an indolo[2,3-\textit{a}]-quinolizidine derivative possessing an \(\textit{E}\)-ethylidene side chain at C-3; IUPAC numbering) to N\textsubscript{5}-Boc-5\(\beta\)-cyano-deformyl-\textit{E}-geissoschizine (8), which is the synthetic equivalent of N\textsubscript{5}-Boc-deformyl-\textit{E}-geissoschizine \(\Delta^{4\text{65}}\)-iminium ion (9) (biogenetic numbering) (Scheme 2).
RESULTS AND DISCUSSION

Oxidation of our earlier described \(\text{N,}-\text{Boc-deformyl-E-geissoschizine (10)} \) with \(\text{m-chloroperbenzoic acid (m-CPBA)} \) led exclusively to \(\text{N,}-\text{Boc-deformyl-E-geissoschizine cis-N, -oxide (11)} \) (Scheme 3).

We have shown earlier\(^{1,9,11}\) that, when the substitution pattern permits, \(\text{N,}-\text{Boc protected indolo[2,3-a]quinolizidine cis-N, -oxides exist predominantly in conformation b (for definition of conformation b, see Ref. 11). This should favour the successful preparation of \(\Delta^{(6)} \)-iminium ions (in biogenetic numbering, \(\Delta^{(6)} \)-iminium ions) (Scheme 4).} \)

Treatment of the cis-N_5-oxide (11) with trifluoroacetic anhydride (TFAA) (modified Polonovski reaction) at -17°C and KCN (cyano trapping^12,13) yielded N_5-Boc-5β-cyano-deformyl-E-geissoschizine (8) in 30% yield. Small amounts of other compounds, among them N_5-Boc-deformyl-E-geissoschizine (10), N_5-Boc-21α-cyano-deformyl-Z-geissoschizine (12), and N_5-Boc-6-trifluoroacetyl-5,6-didehydro-deformyl-E-geissoschizine (13), were isolated (Scheme 5).

Scheme 5. Formation of compounds (8), (10), (12), and (13).
The formation of compound (12) (Z-ethylidene side-chain) can be explained by a Z-favoured E/Z side-chain equilibrium between the intermediate iminium ions (Scheme 6).

Scheme 6. E/Z side-chain equilibrium between the intermediate iminium ions.

The 13C-Nmr data for compounds (8), (11), (12), and (13) are given Figure 1. Comparison of the measured chemical shifts, taking into account the conformational considerations relevant for indolo[2,3-a]quinolizidines in general, provides clear evidence of the stereostructures depicted in the formulae.

Figure 1. The 13C-nmr data for compounds (8), (11), (12), and (13).
The stereochemistry of compound (8) (predominantly in conformation ϕ^*) at C-5 was confirmed by the coupling constants of H-5: 5.5 Hz and 2.5 Hz. This indicated equatorial orientation for H-5 (H-5α) and as a consequence axial orientation for the C-5 cyano-group.

CONCLUSIONS

The present results confirm that, in iminium ion formation (modified Polonovski reaction) and cyano-trapping, N_α-Boc-deformyl-E-geissoschizine cis-N_α-oxide (11) yields N_α-Boc-5β-cyano-deformyl-E-geissoschizine (8), which is the synthetic equivalent of N_α-Boc-deformyl-E-geissoschizine Δ^{495}-iminium ion (9).

The results would be useful in the preparation of compounds possessing the sarpagan or ajmalan ring system. Further studies are in progress.

EXPERIMENTAL

Ir spectra were recorded with a Perkin-Elmer 700 spectrophotometer in CHCl$_3$. Ir absorption bands are given in reciprocal centimetres (cm$^{-1}$). ^1H- and ^{13}C-nmr spectra were measured in CDCl$_3$ either with a Varian Gemini-200 spectrometer working at 199.975 MHz (^1H-Nmr) and 50.289 MHz (^{13}C-Nmr) or a Varian Unity-400 NMR spectrometer working at 399.952 MHz (^1H-Nmr) and 100.577 MHz (^{13}C-Nmr). Chemical shifts are given in ppm by reference to TMS (^1H-Nmr; $\delta_\text{H}=0.0$ ppm) and CDCl$_3$ (^{13}C-Nmr; $\delta_\text{C}=77.0$ ppm). Abbreviations s, d, t, q, m, and br are used to designate singlet, doublet, triplet, quartet, multiplet, and broad, respectively. For the ^{13}C-nmr data, see Figure 1. Mass spectrometry (Elms and HRms) was done on a Jeol DX 303/DA 5000 instrument.
Preparation of N-Boc-deformyl-E-geissoschizine cis-N₅-oxide (11):
A solution of N-Boc-deformyl-E-geissoschizine (10) (114 mg, 0.27 mmol) and m-chloroperbenzoic acid (m-CPBA) (60 mg, 1.3 equiv.) in dry CH₂Cl₂ (5 ml) was stirred at room temperature for 3 h (Ar atm). Normal work-up and purification by column chromatography (alumina, CH₂Cl₂/MeOH:98/2) yielded compound (11).

Compound (11): Y. 83 mg (70%). Amorphous material. Ir: 1725 br (2 x C=O). 'H-Nmr: 1.68 [9H, s, -C(CH₃)₃], 1.80 (3H, d, J=7 Hz, =CHCH₃), 3.68 (3H, s, -OCH₃), 4.03 (1H, d, J=13 Hz, H-21α), 4.15 (1H, d, J=13 Hz, H-21β), 4.85 (1H, br d, J=12 Hz, H-3), 5.89 (1H, q, J=7 Hz, =CECH₂), 7.23-7.29 (2H, m, H-10, H-11), 7.44 (1H, d, J=8 Hz, H-9), 8.04 (1H, d, J=8 Hz, H-12). Ms: 440 (M⁺), 383, 340, 323, 295, 170, 169, 156 (100%). HRms found: 440.2304. Calcd for CₓHₓNₓOₓ: 440.2311.

Preparation of N-Boc-5₆-cyano-deformyl-E-geissoschizine (8):
The cis-N₅-oxide (11) (80 mg, 0.18 mmol) was dissolved in dry CH₂Cl₂ (6 ml) and the mixture was cooled to -17°C with an icesalt bath. Trifluoroacetic anhydride (TFAA) (0.07 ml, 2.5 equiv.) was added with a syringe during 5 min and stirring was continued for 2 h, with the temperature kept at -1°C with an icesalt bath. During one further hour the temperature of the reaction mixture was allowed to rise to -5°C, whereafter the bath was taken away. The temperature of the reaction mixture was allowed to rise to 20°C, KCN (36 mg, 3 equiv.) in H₂O (2 ml) was added, and the pH of the aqueous layer was adjusted to pH 5 by addition of solid NaOAc. The mixture was stirred for 45 min, basified to pH 10 with 10% Na₂CO₃, and extracted with CH₂Cl₂. Normal work-up and purification by flash chromatography (silica, CH₂Cl₂) followed by plc (silica, CH₂Cl₂/MeOH:98/2) gave compound (8) together with compounds (10), (12), and (13).

Compound (8): Y. 24 mg (30%). Amorphous material. Ir: 2350 m (CN), 1730 br (2 x C=O). 'H-Nmr: 1.66 [9H, s, -C(CH₃)₃], 1.68 (3H, d, J=7 Hz, =CHCH₃), 3.64 (3H, s, -OCH₃), 4.04 (1H, dd, J₁=5.5 Hz, J₂=2.5 Hz, H-5α), 4.16 (1H, br d, J=10 Hz, H-3), 5.52 (1H, q, J=7 Hz, =CHCH₃), 7.20-7.34 (2H, m, H-10, H-11), 7.42 (1H, d, J=8 Hz, H-9), 8.08 (1H, d, J=8 Hz, H-12). Ms: 449 (M⁺), 422, 392 (100%), 366, 348, 321, 293, 212, 169, 168. HRms found: 449.2289. Calcd for CₓHₓNₓOₓ: 449.2315.

Compound (10): Y. 8 mg (10%). Amorphous material. For the analytical data, see Ref. 11.

Compound (12): Y. 10 mg (12%). Amorphous material. Ir: 2300 m (CN), 1725 br (2 x C=O). 'H-Nmr: 1.66 [9H, s, -C(CH₃)₃], 1.72 (3H, d, J=7 Hz, =CHCH₃), 3.70 (3H, s, -OCH₃), 4.68 (1H, br d, J=10 Hz, H-3), 4.91 (1H, s, H-21β), 5.44 (1H, q, J=7 Hz, =CHCH₃), 7.20-7.30 (2H, m, H-10, H-11), 7.39 (1H, d, J=8 Hz, H-9), 8.11 (1H, d, J=8 Hz, H-12). Ms: 449 (M⁺), 422, 392, 366, 293 (100%). HRms found: 449.2302. Calcd for CₓHₓNₓOₓ: 449.2315.

Compound (13): Y. 7 mg (8%). Amorphous material. Ir: 1730 br (3 x C=O). 'H-Nmr: 1.68 [9H, s, -C(CH₃)₃], 1.74 (3H, d, J=7 Hz, =CHCH₃), 3.66 (3H, s, -OCH₃), 4.23 (1H, d, J=15 Hz, H-21α), 4.32
(1H, d, J=15 Hz, H-21β), 5.49 (1H, dd, J1=11 Hz, J2=4 Hz, H-3), 5.63 (1H, q, J=7 Hz, =CH2CH3), 7.22-7.30 (2H, m, H-10, H-11), 7.58 (1H, s, H-5), 8.09 (1H, d, J=8 Hz, H-12), 8.46 (1H, d, J=8 Hz, H-9). Ms: 518 (M+), 462, 418, 417, 343, 264 (100%), 195, 167. HRms found: 518.1999. Calcd for C27H29F4N3O5: 518.2028.

REFERENCES AND NOTES

10. Two numbering systems are used: the IUPAC numbering system for compounds whose names are based on the word "indolo[2,3-a]quinolizidine", and the biogenetic numbering system of Le Men and Taylor16 for compounds whose names are based on the word "geissoschizine".

Received, 21st September, 1993