A SYNTHESIS OF 6-METHYLINDOLE DERIVATIVES BY METHYLTHIOMETHYLATION AT 6-POSITION IN INDOLE NUCLEUS

Satoshi Hirano, a Ritsuko Akai, b Yoshihiko Shinoda, a
and Shin-ichi Nakatsuka a, b*

a The United Graduate School of Agricultural Science
and b Faculty of Agriculture, Gifu University,
Yanagido, Gifu 501-11, Japan

Abstract- 6-Methylindole derivatives were synthesized by introduction of methylthiomethyl group onto the 6-position of indole nucleus and subsequent desulfurization.

Introduction of substituents on the benzene part (4~7 position) of indole ring is one of the most difficult problems in the organic syntheses.1 We have developed several useful methods to resolve the problem and applied those to the syntheses of some natural products.2~4 Mitomycin5 is one of the most complicated natural products containing modified indole nucleus. All attempts toward total syntheses6 of mitomycins or its common structure: mitosenes4d, e, 7 started from substituted aniline and no synthetic route toward mitomycins from simple indole have been appeared.

\begin{align*}
\text{Mitomycin A}\quad \text{X=OCH}_3 \quad (1) \\
\text{C}\quad \text{X=NH}_2 \quad (2)
\end{align*}

\begin{align*}
\text{3} & \rightarrow \\
\text{4}
\end{align*}
We have been reported efficient methods for the synthesis of indoloquinone and applied them for the synthesis of 7-methoxymitosene (4) starting from 6-methylindole (3). In this paper, we report a novel method for the synthesis of 6-methylindole derivative by methylation at 6-position of indole nucleus.

Although Friedel-Crafts acylation of methyl indole-3-carboxylate (5) afforded corresponding 5- and 6-monoacyl derivatives in reasonable yields, Friedel-Crafts alkylation of 5 gave only small amount of 5- and Galkylated products. For the synthesis of mitomycin, we tried methylation of methyl 1-methylindole-3-carboxylate (6) by CH₃Br/AlCl₃, (CH₃)₂SO₄/AlCl₃ etc., but no desired methylated product was obtained. On the other hands, Friedel-Crafts alkylation of 6 using stabilized alkylating agent: chloromethyl methyl sulfide (5 eq. CICh₂SCH₃)/5 eq. AlCl₃ at 25°C for 1 h gave desired monoalkylated products (8 and 9) as unseparable mixture in 28% yield(1:1). 8; ¹H-nmr (CDCl₃) δ(ppm) 2.02 (3H, br s), 3.82 (3H, s), 3.83 (2H, s), 3.90 (3H, s), 7.23 (1H, br d, J=8.2 Hz), 7.26 (1H, s), 7.78 (1H, s), 8.09 (1H, d, J=8.2 Hz). 9; ¹H-nmr (CDCl₃) δ(ppm) 2.00 (3H, s), 3.82 (3H, s), 3.84 (2H, s), 3.91 (3H, s), 7.29~7.34 (2H, m), 7.76 (1H, s), 8.04 (1H, s). Desulfurization of 8 and 9 was achieved with Raney Ni to give 5- and 6-methyl derivatives (10 and 11) in 90% yield but those were also unseparable on silica gel tlc or column chromatography.

N-Benzyl derivative (7) was obtained by benzylation of 5 with BnBr/K₂CO₃ in DMF in 96% yield. Bromination of 7 with 1.5 eq. Br₂ at 0°C for 2 h afforded 5-bromo derivative (13,11 31%) with its 6-bromo isomer (12,10 61%). Those were easily separated on silica gel column chromatography. The brominated positions of 12 and 13 were easily determined by ¹H-nmr spectra [H-4 proton signal. 12; 8.05 ppm (1H, d, J=8.6 Hz), 13; 8.33 ppm (1H, d, J=1.8 Hz)]. Methyliothiomethylation of 13 with 1.2 eq. CICh₂SCH₃/5 eq. AlCl₃ in CH₂Cl₂ at -20°C for 30 min was very clean and 6-methylthiomethyl derivative (14) was obtained in 91% yield after short column chromatography using silica gel. We understand that bromine atom at the 5-position of 13 accelerated the reactivity of the 6-position and alkylating yield was very high.

Not only desulfurization but also debromination of 14 with Raney Ni in methanol at 25°C for 10 min gave desired 6-methylindole derivative (15,13 76%). Removal of N-benzyl group of 15 was achieved with AlCl₃ in CH₂Cl₂ at 25°C to give methyl 6-methylindole-3-carboxylate (16,14 87%). Consequently, methyl group was introduced at the 6-position of indole nucleus by (1) bromination, (2) methylthiomethylation, (3)
5. R = H 6. R = CH₃ 7. R = Bn

Unseparable mixture of 8 and 9
8. R₁ = CH₂SCH₃, R₂ = H
9. R₁ = H, R₂ = CH₂SCH₃

Unseparable mixture of 10 and 11
10. R₁ = CH₃, R₂ = H
11. R₁ = H, R₂ = CH₃

Reagents: a) CICH₂SCH₃, AlCl₃ (28%); b) Raney Ni (90%); c) BnBr, K₂CO₃ (96%);
d) Br₂ (12; 61%, 13; 31%); e) CICH₂SCH₃, AlCl₃ (91%); f) Raney Ni (76%);
g) AlCl₃ (87%); h) BrCH₂CH₂CH₂Cl, K₂CO₃ (94%).

reduction with Raney Ni in 21% over all yield (7 → 15).

Then, 6-methylindole derivative (16) was treated with Br(CH₂)₃Cl/K₂CO₃ in DMF to afford N-chloropropyl derivative (17) in 94% yield. Since we reported a synthetic route toward 7-methoxymitosene (4) from 17 as a key intermediate, we could establish an improved route to 4.

By combination of those results and the previous publication, we could introduce all functional groups found in 7-methoxymitosene (4) in a simple indole (5). Further synthetic studies toward mitomycins are now in progress.

REFERENCES AND FOOTNOTES

9. 7; mp 69.5-70°C, 1H-nmr (CDCl$_3$) δ(ppm) 3.91 (3H, s), 5.34 (2H, s), 7.14-7.33 (8H, m), 7.84 (1H, s), 8.20 (1H, m).

10. 12; mp 113.5-114°C, 1H-nmr (CDCl$_3$) δ(ppm) 3.89 (3H, s), 5.28 (2H, s), 7.12-7.38 (6H, m), 7.46 (1H, d, J=1.5 Hz), 7.78(1H, s), 8.05 (1H, d, J=8.6 Hz).

11. 13; mp 118°C, 1H-nmr (CDCl$_3$) δ(ppm) 3.91 (3H, s), 5.30 (2H, s), 7.11-7.17 (3H, m), 7.30-7.33 (4H, m), 7.83 (1H, s), 8.33 (1H, d, J=1.8 Hz).

12. 14; mp 131°C, 1H-nmr (CDCl$_3$) δ(ppm) 1.92 (3H, s), 3.88 (2H, s), 3.91 (3H, s), 5.32 (2H, s), 7.12-7.15 (2H, m), 7.27-7.34 (3H, m), 7.83 (1H, s), 8.39 (1H, s).

13. 15; mp 81°C, 1H-nmr (CDCl$_3$) δ(ppm) 2.44 (3H, s), 3.89 (3H, s), 5.28 (2H, s), 7.09-7.15 (4H, m), 7.30-7.36 (3H, m), 7.76 (1H, s), 8.38 (1H, d, J=8.6 Hz).

14. 16; mp 155°C, 1H-nmr (CDCl$_3$) δ(ppm) 2.46 (3H, s), 3.92 (3H, s), 7.11 (1H, br d, J=8.2 Hz), 7.20 (1H, br s), 7.84 (1H, d, J=3.1 Hz), 8.05 (1H, d, J=8.2 Hz), 8.56 (1H, br s).

Received, 4th November, 1994