STUDIES OF SCHMIDT-TYPE REARRANGEMENTS OF PENTACYCLO-
[5.4.0.0^2.6.0^3.10.0^5.9]UNDECAN-8-ONE. UNEXPECTED INCURSION OF THE
HUISGEN REARRANGEMENT†

Alan P. Marchand*, Viktor D. Sorokin, D. Rajagopal, and Simon G. Bott*

Department of Chemistry, University of North Texas, Denton, TX 76203-0068, U. S. A.

Abstract-Reaction of pentacyclo[5.4.0.0^2.6.0^3.10.0^5.9]undecan-8-one (1) with
H₂NOSO₃H-HCO₂H affords two pentacyclic lactams (2a) (15%) and (2b) (30%).
Reaction of 1 with HN₃-Tf₂O results in the formation of a pentacyclic urea (3)
(16%) and a tricyclic azidonitrile (4) (18%). The unusual "double Schmidt rear-
rangement" that results in the formation of 3 is rationalized via formation of an
intermediate tetrazole (5) which undergoes subsequent acylation with concomitant
Huisgen rearrangement.

INTRODUCTION
The synthesis and chemistry of novel, substituted pentacyclo[5.4.0.0^2.6.0^3.10.0^5.9]undecanes (PCUs) have been
studied extensively in recent years.¹,² Compounds of this type are of interest as intermediates in the synthesis of
unusual polycyclic cage systems² and of triquinane natural products.³ In particular, ring expansion processes,
when performed on PCU-8-one and/or PCU-8.11-dione, provide a convenient entry into a wide variety of
unusual pentacyclic C₁₂ and C₁₃ cage systems. Methods that have been employed for this purpose include: (i)
reactions of PCU-ones with N₂CHCO₂Et performed in the presence of F₃B-OEt₂,⁴ (ii) Tieffenau-Demjanov
ring expansions,⁵ and (iii) Baeyer-Villiger reactions.⁶ As part of a continuing study of ring expansion reactions
of PCU-ones,⁴,⁵ we have examined Schmidt-type rearrangements of PCU-8-one (1) under a variety of
experimental conditions.

The reaction of 1 with hydroxylamine O-sulfonic acid in the presence of formic acid⁷ results in Schmidt
rearrangement, thereby affording two isomeric lactams (2a) and (2b) (Scheme 1, product ratio 2a : 2b = 1:2).
Unequivocal assignment of each of the structures of 2a (as 12-azapentacyclo[5.5.0.0^2.6.0^3.10.0^5.9]dodecan-11-
one) and 2b (as 11-azapentacyclo[5.5.0.0^2.6.0^3.10.0^5.9]dodecan-12-one) was secured via application of X-ray
crystallographic methods.

Schmidt reaction of PCU-8,11-dione with NaN₃-MsOH has been reported⁸ to be accompanied by extensive
skeletal rearrangement of the pentacyclic cage system. In our hands, the corresponding reaction of 1 with HN₃-
Tf₂O afforded two products, a substituted polycyclic urea (3) (16%) and a tricyclic nitrile (4) (18%, Scheme

†Dedicated to Professor Rolf Huisgen on the occasion of his 75th birthday.
Scheme 1

```
\[ \text{reflux 24 h} \]
\[ \text{H}_2\text{NOSO}_3\text{H, HCO}_2\text{H} \]

\[
\begin{array}{c}
\text{1} \\
\text{2a (15\%)} \\
\text{2b (30\%)}
\end{array}
\]
```

2. X-Ray structure drawings of 3 and 4 are shown in Figures 1 and 2, respectively. The latter compound is closely analogous to the kinds of rearranged polycyclic ketonitriles that were reported previously for the reaction of PCU-8,11-dione with NaN_3-MsOH.8

Scheme 2

```
\[ \text{HN}_3, \text{TF}_2\text{O} \]
\[ \text{CH}_2\text{Cl}_2 \]
\[ -78 \text{\degree C to 25 \degree C} \]

\[
\begin{array}{c}
\text{1} \\
\text{3 (16\%)} \\
\text{4 (18\%)}
\end{array}
\]
```

Compound (3) appears to have been produced from 1 via a "double Schmidt rearrangement". The formation of a cyclic urea by double ring-homologation of a cyclic ketone is highly unusual but not entirely unprecedented.9 Thomas10 has reported that tetrazoles can be prepared conveniently via reaction of aliphatic secondary amides with NaN_3-Tf_2O. In addition, when treated with acyl halides, 5-substituted tetrazoles are known to undergo N-acylation accompanied by fragmentation of the tetrazole ring with concomitant loss of N_2. This procedure has been employed extensively to synthesize 1,3,4-oxadiazoles11 and is an example of the familiar "Huisgen rearrangement".12

The formation of cyclic urea (3) as a product of the reaction of 1 with HN_3-Tf_2O can be rationalized in terms of the mechanism postulated in Scheme 3. Here, Schmidt rearrangement leads initially to 2a and 2b. Further reaction with HN_3-Tf_2O appears to occur selectively with 2b, thereby resulting in formation of the corresponding tetrazole (5). N-acylation of 5 can occur subsequently via reaction with Tf_2O, ultimately affording the corresponding triflyl enol ether (8).13 Finally, hydrolysis of triflyl enol ether, which occurs during aqueous workup, leads to the observed reaction product (3).
Figure 1. X-ray structure drawing of 3.

Figure 2. X-ray structure drawing of 4.
Our suggestion that 2b (rather than 2a) is the key intermediate in the reaction of 1 with HN3-Tf2O which is transformed selectively into 3 has been verified by the results of a control experiment. Thus, a 1:2 mixture of 2a and 2b was subjected to the reaction conditions which are identical to those shown in Scheme 2. Unreacted starting material was recovered, and the composition of this material was subjected subsequently to ¹H nmr spectroscopic analysis. Integration of the ¹H nmr spectrum of the mixture of recovered 2a and 2b indicated that the ratio of 2a : 2b had dropped to 1:1.3, a result that is consistent with the mechanism shown in Scheme 3 (see the Experimental Section).

Scheme 3

The formation of 4 as a product of the reaction of 1 with HN3-Tf2O is rationalized by the mechanism shown in Scheme 4. This mechanism is consistent with that which was forwarded previously to account for the course of the corresponding reaction of PCU-8,11-dione with NaN3-MsOH.⁸
EXPERIMENTAL

Melting points are uncorrected. Elemental microanalyses were performed by M-H-W Laboratories, Phoenix, AZ.

Schmidt Rearrangement of 1. A solution of 1 (1.6 g, 10 mmol) and hydroxylamine O-sulfonic acid (H$_2$NOSO$_3$H, 1.5 g, 15 mmol) in HCOZH (15 ml) was refluxed for 24 h. The reaction mixture was concentrated in vacuo to remove formic acid, and water (50 ml) was added to the residue. The resulting suspension was extracted with CHC$_3$ (3 x 15 ml). The combined organic layers were washed sequentially with 10% aqueous NaHC$_3$ (20 ml), water (20 ml), and brine (20 ml). The organic layer was dried (MgSO$_4$) and filtered, and the filtrate was concentrated in vacuo. The residue was purified via column chromatography on silica gel by using a gradient elution scheme (10-50% EtOAc-hexane mixed solvent). The first chromatography fraction afforded an oil (0.5 g) which was not identified. The second fraction afforded a mixture of lactams (2a) and (2b) (800 mg, 46% product ratio 2a:2b = 1:2). Individual pure isomers were obtained by fractional recrystallization of this product mixture from EtOAc. Pure 2a was thereby obtained as a colorless microcrystalline solid: mp 251 °C (decomp.); ir (KBr) 3186 (m), 2941 (s), 1656 (vs), 1463 (w), 1401 cm$^{-1}$ (w); 1H nmr (CDCl$_3$) δ 1.39 (AB, J$_{AB}$ = 10.5 Hz, 1 H), 1.60 (AB, J$_{AB}$ = 10.5 Hz, 1 H), 1.55 (s, 2 H), 2.30 (br s, 1 H), 2.50 (s, 3 H), 2.55-2.70 (m, 1 H), 2.70-2.95 (m, 2 H), 3.86 (dt, J = 6.2, 8.5 Hz, 1 H), 7.12 (br s, 1 H); 13C nmr (CDCl$_3$) δ 30.09 (t), 36.35 (t), 38.65 (d), 39.12 (d), 40.61 (d), 41.98 (d), 42.88 (d), 45.83 (d), 47.85 (d), 50.00 (d), 177.2 (s). Anal. Calcd for C$_{11}$H$_{13}$NO: C, 75.40; H, 7.48. Found: C, 75.34; H, 7.32.

Compound (2b) was obtained as a colorless microcrystalline solid, mp 237 °C; ir (KBr) 3187 (m), 3071 (m), 2928 (s), 1671 (s), 1470 (w), 1402 cm$^{-1}$ (w); 1H nmr (CDCl$_3$) δ 1.41 (AB, J$_{AB}$ =10.5 Hz, 1 H). 1.62 (AB, J$_{AB}$ =10.5 Hz, 1 H), 1.55 (s, 2 H), 2.13 (t, J = 3.9 Hz, 1 H), 2.40 (m, 1 H), 2.47-2.68 (m, 2 H), 2.75-2.95 (m, 2 H), 3.10 (m, 1 H), 3.63 (m, 1 H), 7.26 (br s, 1 H); 13C nmr (CDCl$_3$) δ 30.09 (t), 33.09 (t), 35.06 (d), 37.11 (d), 38.42 (d), 38.68 (d), 42.49 (d), 44.15 (d), 48.14 (d), 56.30 (d), 173.8 (s). Anal. Calcd for C$_{11}$H$_{13}$NO: C, 75.40; H, 7.48. Found: C, 75.15; H, 7.53.
Reaction of 1 with HN₃ - Tf₂O. A solution of 1 (2.00 g, 12.5 mmol) and HN₃ (37 ml of a 1.7 M solution in CH₂Cl₂, 2.69 g, 62.8 mmol) under argon was cooled externally to -78 °C (dry ice-acetone bath). To this cold solution was added Tf₂O (3.55 g, 12.6 mmol) dropwise with stirring. After the addition of Tf₂O had been completed, the cold bath was removed, and the stirred reaction mixture was allowed to warm gradually to room temperature during 3 h. A solid, which precipitated during the course of the reaction, was removed by filtration. The filtrate was extracted with 10% aqueous NaHCO₃ (100 ml). The layers were separated, and the aqueous layer was extracted with CHCl₃ (3 x 25 ml). The combined organic layers were washed sequentially with water (100 ml) and brine (100 ml). The organic layer was dried (Na₂SO₄) and filtered, and the filtrate was concentrated in vacuo. The residue, a pale yellow oil, was dissolved in EtOAc (4 ml). The resulting solution was concentrated slowly via evaporation under ambient conditions, during which time crystals gradually formed and precipitated from solution. After several days, the precipitated solid was collected by suction filtration, thereby affording 3 (647 mg, 16%) as a colorless microcrystalline solid: mp 196-197 °C; ir (KBr) 3223 (m), 3110 (m), 2973 (s), 1683 (m), 1545 (s), 1444 (m), 1374 (m), 1293 (m), 1194 (vs), 1088 cm⁻¹ (s); ¹H nmr (CDCl₃) δ 1.41 (AB, J₁₂ = 11.3 Hz, 1 H), 1.66 (AB, J₁₂ = 11.3 Hz, 1 H), 1.60-2.05 (m, 2 H), 2.65 (m, 4 H), 2.94 (m, 1 H), 3.12 (m, 1 H), 3.82, (dd, J = 17.6, 8.7 Hz, 1 H), 4.45 (dd, J = 9.1, 2.7 Hz, 1 H), 6.28 (d, J = 7.8 Hz, 1 H); ¹³C nmr (CDCl₃) δ 29.10 (t); 37.69 (t), 40.55 (d), 41.31 (d), 42.58 (d), 44.39 (d), 46.12 (d), 46.48 (d), 46.93 (d), 63.83 (d), 119.7 (q, J₁₂CF = 322 Hz), 154.3 (s); ¹⁹F nmr (CDCl₃; CFCl₃ internal standard) -70.72 (d). Anal. Calcd for C₁₁H₁₂N₂O₃F₃S: C, 44.72; H, 4.06; N, 8.69. Found: C, 44.91; H, 4.07; N, 8.57.

The mother liquor which remained after removal of 3 was concentrated in vacuo. The residual yellow oil was purified via column chromatography on silica gel by eluting with 20% EtOAc-hexane. The initial chromatography fractions afforded an oil (180 mg), which was not characterized. Continued elution of the chromatography column with 50% EtOAc-hexane afforded pure 4 (450 mg, 18%) as a colorless microcrystalline solid: mp 85-86 °C; ir (KBr) 3295 (m), 2977 (m), 2226 (m), 2078 (vs), 1650 (m), 1643 cm⁻¹ (m); ¹H nmr (CDCl₃) δ 1.60-2.20 (m, 4 H), 2.60 (m, 1 H), 2.85 (m, 3 H), 3.12 (m, 1 H), 3.75 (s, 1 H), 6.08 (m, 2 H); ¹³C nmr (CDCl₃) δ 34.39 (t), 39.68 (d), 40.43 (t), 40.92 (d), 44.08 (d, 2 C), 49.53 (d), 73.35 (d), 120.1 (s), 133.5 (d), 134.8 (d). Anal. Calcd for C₁₂H₁₃N₂O₃F₃S: C, 46.98; H, 4.06; N, 8.69. Found: C, 46.98; H, 4.06; N, 8.69.

Control Experiment: Reaction of 2a + 2b with HN₃ - Tf₂O. A solution of 2a and 2b (ratio 2a : 2b = 1:2, 1.0 g, 5.7 mmol) and HN₃ (20 ml of a 1.7 M solution in CH₂Cl₂, 1.46 g, 34 mmol) under argon was cooled externally to -78 °C (dry ice-acetone bath). To this cold solution was added Tf₂O (1.6 g, 5.7 mmol) dropwise with stirring. After the addition of Tf₂O had been completed, the cold bath was removed, and the stirred reaction mixture was allowed to warm gradually to room temperature during 3.5 h. A pale yellow oil separated from solution during the course of the reaction. The supernatant liquid was decanted and then was washed sequentially with water (50 ml), 10% aqueous NaHCO₃ (50 ml), and brine (25 ml). The organic layer was dried (Na₂SO₄) and filtered, and the filtrate was concentrated in vacuo. The residual solid was recrystallized from EtOAc, thereby affording 3 (280 mg, 15%). The ¹H and ¹³C nmr spectra of this material were identical in.
all respects with the corresponding spectra of 3 that had been obtained perviously from the reaction of 1 with HN3 - Tf2O (vide supra).

The remaining mother liquor was concentrated in vacuo, and the residue was purified via column chromatography on silica gel by eluting with 50% EtOAc-hexane. The initial chromatography fractions afforded an oil (160 mg) which was not further characterized. Continued elution of the chromatography column gave a mixture of 2a and 2b (ratio 2a : 2b = 1:1.3). These results suggest that 2a and 2b are formed via reaction of 1 with HN3 - Tf2O, and that 3 is formed selectively by subsequent in situ reaction of 2b with HN3 - Tf2O.

X-Ray Structures of 2a, 2b, 3, and 4. All data were collected on an Enraf-Nonius CAD-4 diffractometer by using the o-20 scan technique, Mo Kα radiation (λ = 0.71073 Å) and a graphite monochromator. Standard procedures used in our laboratory for this purpose have been described previously. Pertinent X-ray data are given in Table 1. Data were corrected for Lorentz and polarization effects but not for absorption. The structures were solved by direct methods [i.e., SIR16 (2a, 2b, and 4) and SHELXS-8617 (3)], and the model was refined by using full-matrix least-squares techniques. Anisotropic parameters were incorporated for all non-hydrogen atoms. Hydrogen atoms were located on difference maps and then were included in the model in idealized positions [U(H) = 1.3 Beq(C)]. All computations other than those specified were performed by using MolEN. Scattering factors were taken from the usual sources.

Table 1. X-ray structure data for 2a, 2b, 3, and 4.

<table>
<thead>
<tr>
<th>Compound</th>
<th>2a</th>
<th>2b</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C11H13NO</td>
<td>C11H13NO</td>
<td>C12H13F3N2O3S</td>
<td>C11H12N4</td>
</tr>
<tr>
<td>Size (mm)</td>
<td>.08 x .22 x .24</td>
<td>.21 x .23 x .27</td>
<td>.42 x .44 x .48</td>
<td>.48 x .49 x .52</td>
</tr>
<tr>
<td>Space Group</td>
<td>P1</td>
<td>P21/c</td>
<td>P21/c</td>
<td>P2121</td>
</tr>
<tr>
<td>a (Å)</td>
<td>6.4423 (5)</td>
<td>10.964 (4)</td>
<td>12.795 (1)</td>
<td>8.0082 (7)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>6.5451 (5)</td>
<td>6.629 (1)</td>
<td>8.990 (1)</td>
<td>9.443 (1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>11.0543 (6)</td>
<td>12.817 (2)</td>
<td>12.306 (2)</td>
<td>13.515 (2)</td>
</tr>
<tr>
<td>α (°)</td>
<td>95.175 (6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β (°)</td>
<td>94.450 (6)</td>
<td>115.21 (2)</td>
<td>115.60 (1)</td>
<td></td>
</tr>
<tr>
<td>γ (°)</td>
<td>114.105 (6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V (Å³)</td>
<td>420.27 (6)</td>
<td>842.8 (4)</td>
<td>1276.6 (3)</td>
<td>1022.2 (2)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Dc (g-cm⁻³)</td>
<td>1.385</td>
<td>1.381</td>
<td>1.677</td>
<td>1.301</td>
</tr>
<tr>
<td>μ (cm⁻¹)</td>
<td>0.83</td>
<td>0.83</td>
<td>2.90</td>
<td>0.78</td>
</tr>
<tr>
<td>ω-2θ (2θmax)</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>Total refl.</td>
<td>1027</td>
<td>1204</td>
<td>442</td>
<td>1442</td>
</tr>
<tr>
<td>Unique refl.</td>
<td>1027</td>
<td>1156</td>
<td>1679</td>
<td>1260</td>
</tr>
<tr>
<td>Rint</td>
<td>-</td>
<td>0.027</td>
<td>0.019</td>
<td>0.026</td>
</tr>
<tr>
<td>I ≥ 3σ(I)</td>
<td>734</td>
<td>771</td>
<td>1295</td>
<td>834</td>
</tr>
<tr>
<td>Parameters</td>
<td>118</td>
<td>118</td>
<td>190</td>
<td>136</td>
</tr>
<tr>
<td>R, wR</td>
<td>.0450, .0461</td>
<td>.0454, .0453</td>
<td>.0464, .0463</td>
<td>.0621, .0663</td>
</tr>
<tr>
<td>(Δ/σ)max</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>ρmin; ρmax</td>
<td>0.19; -0.21</td>
<td>0.15; -0.12</td>
<td>0.64; -0.42</td>
<td>0.30; -0.25</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENT

We thank the Robert A. Welch Foundation (Grant B-963 to A. P. M., B-1202 to S. G. B.) and the University of North Texas Faculty Research Committee for financial support of this study.

REFERENCES

15. Tables of positional parameters and their estimated standard deviations, general displacement parameters, bond distances, bond angles, and torsion angles for 2a, 2b, 3, and 4 (iii + 43 pages) are available upon request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U. K. Requests should be accompanied by the full literature citation for this article.

Received, 17th March, 1994