SYNTHESIS OF 1,3-DISUBSTITUTED 1,2,4-TRIAZOLO[4,3-α]QUINAZOLIN-5-ONE DERIVATIVES

Hyam A. Abdelhadi, Tayseer A. Abdallah, and Hamdi M. Hassaneen*

Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt

Abstract - Treatment of hydrazonoyl halides 8 with 2-mercapto-4(3H)-quinazolinone (7) in refluxing chloroform in the presence of triethylamine afforded 1,3-disubstituted 1,2,4-triazolo[4,3-α]quinazolin-5-one derivatives.

Literature routes, applicable to the synthesis of 1,2,4-triazolo[4,3-α]quinazolin-5-ones (2), have so far been confined to the cyclization reaction of 2-hydrazino 3-substituted quinazolin-4-one (1) with carboxylic acids or their derivatives or oxidative cyclization of hydrazones (3), derived from 3-substituted 2-hydrazinoquinazolin-4-one and aromatic aldehydes, with ferric chloride. Cyclization of 3-unsubstituted 2-hydrazinoquinazolin-4-one (4) with carboxylic acids or their derivatives led to the formation of a mixture of the angular 1,2,4-triazolo[4,3-α]quinazolin-5-one (5) and the linear 1,2,4-triazolo[3,4-b]quinazolin-5-one (6).

In this paper, we introduce one-pot synthesis for the title compounds (13) utilizes readily inexpensive reactants and gives good yields. Also, it provides direct access to a variety of
substituents at N-1 and C-3 heteroring positions. Evidently, this route is of wide scope and
generality so that it competes favourably with the methods reported for the preparation
of 1,2,4-triazolo[4,3-a]quinazolin-5-one derivatives.

The starting 2-mercapto-4(3H)quinazolinone (7) was prepared according to the reported
procedure.5 The reaction of hydrazonoyl halides (8) with 7 were carried out in refluxing
chloroform in the presence of triethylamine for few hours till hydrogen sulfide gas ceased
to evolve. After concentration of the reaction mixture, 1,2,4-triazolo[4,3-a]quinazolin-5-ones
were formed (Scheme 1). All the reactions examined are regioselective and in all cases
only one of the isomeric structures (13) or (14) has been isolated. The formation of one
isomer is also evidenced on the basis of tlc and 1H nmr spectrometry of the crude reac-
tion mixtures.

The reaction pathway that seems to account for the formation of 13 from 8 and 7 is
outlined in Scheme 1. It is proposed that the reaction involves an initial nucleophilic subs-
titution to give thiohydrazonate esters (9), which undergo S → N heteroaryl migration to
give the thiohydrazides (10). In the final stage of the reactions, the intermediate thiohydra-
zides (10) undergo cyclization with concurrent elimination of hydrogen sulfide to give the
final product. In these reactions there seem to be two possible courses for the cyclization
of 10 to give 13 or 14 depending on the direction of the cyclization (a and or b in Scheme
1). In the intermediate, thiohydrazide (10), the less nucleophilic nitrogen N-3 due to ele-
ctronic effect of the carbonyl group6,7 could cause preferential ring closure to 1,3-disub-
stituted 1,2,4-triazolo[4,3-a]quinazolin-5-one (13). Moreover, the structures of the products
(13) were further substantiated by comparison with authentic samples of their regioisomers
(14). For example, the ir spectrum of 14a, prepared from 1-(p-nitrophenyl)-3-methyl-
1,2,4-triazol-5-one with anthranilic acid according to literature method,8 was found diff-
 Scheme 1

<table>
<thead>
<tr>
<th>R/Ar</th>
<th>R/Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>CH$_3$/p-NO$_2$/C$_6$H$_4$</td>
</tr>
<tr>
<td>b</td>
<td>CH$_3$CH$_2$/p-NO$_2$/C$_6$H$_4$</td>
</tr>
<tr>
<td>c</td>
<td>C$_6$H$_4$/C$_6$H$_5$</td>
</tr>
<tr>
<td>d</td>
<td>C$_6$H$_5$/CH=CH/C$_6$H$_5$</td>
</tr>
<tr>
<td>e</td>
<td>2-thienyl/p-NO$_2$/C$_6$H$_4$</td>
</tr>
<tr>
<td>f</td>
<td>CH$_3$CO/C$_6$H$_5$</td>
</tr>
<tr>
<td>g</td>
<td>C$_2$H$_5$OCO/C$_6$H$_5$</td>
</tr>
<tr>
<td>h</td>
<td>C$_6$H$_5$CO/C$_6$H$_5$</td>
</tr>
<tr>
<td>i</td>
<td>2-thienoyl/C$_6$H$_5$</td>
</tr>
<tr>
<td>j</td>
<td>C$_6$H$_5$/p-NO$_2$/C$_6$H$_4$</td>
</tr>
<tr>
<td>k</td>
<td>2-naphthoyl/C$_6$H$_5$</td>
</tr>
<tr>
<td>l</td>
<td>2-furyl/p-NO$_2$/C$_6$H$_4$</td>
</tr>
<tr>
<td>m</td>
<td>C$_6$H$_5$NHCO/C$_6$H$_5$</td>
</tr>
</tbody>
</table>
rent from 13a and its melting point with 13a showed depression. Also, 13a exhibits its absorption maximum at \(\lambda 327 \text{ nm} \) whereas its isomer 14a shows its maximum at \(\lambda 379 \text{ nm} \). This difference is in agreement with the fact that absorption maxima of quinones of type 15a are known to be lie at shorter wavelength than those of the dienones 15b.\(^9\)

\[
\begin{align*}
15a & \quad 15b \\
X = \text{NH}
\end{align*}
\]

The structural assignment of the isolated products (13) is confirmed from their analytical and spectral data (IR, \(^1\)H-nmr, MS) (experimental). On the basis of these findings the products isolated from the studied reactions were assigned structure (13).

EXPERIMENTAL

Melting points were determined on a Gallenkamp apparatus and are uncorrected. Infrared spectra (KBr) were recorded on a Pye Unicam Sp-300 IR spectrophotometer. \(^1\)H Nmr spectra were recorded on a Varian Gemini 200 and Varian EM 390 spectrometers for solution in deuterated chloroform or dimethyl sulfoxide-d\(_6\) using tetramethylsilane as internal standard. Mass spectra were recorded on a GCMS-QP 1000-EX Shimadzu, Japan. Elemental analyses were performed by the microanalytical laboratory, University of Cairo, Giza, Egypt. The hydrazonoyl halides (8a),\(^{10}\) (8b),\(^{10}\) (8c),\(^{11}\) (8d),\(^{12}\) (8e),\(^{13}\) (8f),\(^{14}\) (8g),\(^{15}\) (8h),\(^{16}\) (8i),\(^{17}\) (8j),\(^{18}\) (8k),\(^{19}\) (8l),\(^{20}\) and (8m)\(^{21}\) were prepared as previously described.

General method for preparation of 1,3-disubstituted 1,2,4-triazolo[4,3-\(a\)]quinazolin-5-ones (13). To a stirred solution of the appropriate hydrazonoyl halides (8) (5 mmol) and 2-mercapto-4(3H)-quinazolinone (7) (0.9 g, 5 mmol) in chloroform (40 ml) was added triethylamine (0.7 ml, 5 mmol) at room temperature. The reaction mixture was refluxed till hydrogen sulfide ceased to evolve (10-12 h). The reaction mixture was washed three times with water and the organic layer was collected, dried over anhydrous sodium sulfate and then filtered. The solvent was evaporated under reduced pressure and the residue was treated with methanol. The solid was collected and crystallized from suitable solvent to
give the corresponding 1,2,4-triazolo[4,3-α]quinazolin-5-one derivatives (13a-m).

13a: mp 220-222°C (DMF); yield 1.13 g (71 %); δ (CDCl₃) 2.4 (s, 3H), 7.0-8.6 (m, 8H) ppm; v (KBr) 1709 (C=O) cm⁻¹; ms m/z 321, 275, 206, 130, 102, 90, 77. Anal. Calcd for C₁₆H₁₁N₅O₃: C, 59.8; H, 3.4; N, 21.8. Found: C, 59.8; H, 3.5; N, 21.5.

13b: mp 223-224°C (acetic acid); yield 1.17 g (70 %); δ (CDCl₃) 1.2 (t, J = 7 Hz, 3H), 2.2 (q, J = 7 Hz, 2H), 7.0-8.5 (m, 8H) ppm; v (KBr) 1710 (C=O) cm⁻¹. Anal. Calcd for C₁₇H₁₃N₅O₃: C, 60.7; H, 3.9; N, 20.9. Found: C, 60.9; H, 3.9; N, 20.6.

13c: mp 240-242°C (acetic acid); yield 1.27 g (75 %); δ (CDCl₃) 7.2-8.0 (m, Ar-H) ppm; v (KBr) 1700 (C=O) cm⁻¹; ms m/z 338, 233, 206, 130, 102, 91, 77, 51. Anal. Calcd for C₁₉H₁₄N₄O: C, 74.5; H, 4.1; N, 16.5. Found: C, 74.3; H, 4.2; N, 16.3.

13d: mp 214-215°C (acetic acid); yield 1.27 g (70 %); δ (CDCl₃) 7.2-8.4 (m, Ar-H) ppm; v (KBr) 1710 (C=O) cm⁻¹; ms m/z 364, 287, 236, 182, 130, 102, 91, 77, 51. Anal. Calcd for C₂₃H₁₆N₄O: C, 75.8; H, 4.4; N, 15.4. Found: C, 75.6; H, 4.1; N, 15.2.

13e: mp 258-260°C (benzene); yield 1.12 g (67 %); δ (CDCl₃) 6.9-8.3 (m, Ar-H) ppm; v (KBr) 1710 (C=O) cm⁻¹. Anal. Calcd for C₁₉H₁₁N₅O₃S: C, 58.6; H, 2.8; N, 18.0. Found: C, 58.7; H, 2.6; N, 17.8.

13f: mp 170°C (ethanol); yield 0.99 g (65 %); δ (CDCl₃) 2.9 (s, 3H), 7.2-8.4 (m, 9H) ppm; v (KBr) 1730 (C=O), 1720 (C=O) cm⁻¹. Anal. Calcd for C₁₇H₁₂N₄O₂: C, 67.1; H, 4.0; N, 18.4. Found: C, 67.3; H, 3.9; N, 18.1.

13g: mp 156°C (ethanol); yield 1.12 g (67 %); δ (CDCl₃) 1.5 (t, J = 7 Hz, 3H), 4.6 (q, J = 7 Hz, 2H), 7.3-8.4 (m, 9H) ppm; v (KBr) 1760 (C=O), 1720 (C=O) cm⁻¹. Anal. Calcd for C₁₈H₁₄N₄O₃: C, 64.7; H, 4.2; N, 16.6. Found: C, 65.0; H, 4.3; N, 16.5.

13h: mp 226-228°C (acetic acid); yield 1.19 g (65 %); δ (CDCl₃) 7.0-8.2 (m, Ar-H) ppm; v (KBr) 1710 (C=O), 1690 (C=O) cm⁻¹. Anal. Calcd for C₂₂H₁₄N₄O₂: C, 72.1; H, 3.9; N, 15.0. Found: C, 72.6; H, 3.3; N, 15.0.

13i: mp 244-246°C (acetic acid); yield 1.26 g (68 %); δ (DMSO-d₆) 7.0-8.0 (m, Ar-H) ppm; v (KBr) 1710 (C=O), 1660 (C=O) cm⁻¹; ms m/z 372, 261, 186, 166, 111, 90, 77, 51. Anal. Calcd for C₂₀H₁₂N₄O₃S: C, 64.5; H, 3.2; N, 15.0. Found: C, 64.2; H, 3.4; N, 14.7.

13j: mp 268-270°C (acetic acid); yield 1.44 g (75 %); δ (DMSO-d₆) 6.8-8.5 (m, Ar-H) ppm; v (KBr) 1700 (C=O) cm⁻¹; ms m/z 383, 337, 234, 206, 169, 130, 102, 90, 77, 51.
Anal. Calcd for $C_{21}H_{13}N_5O_3$: C, 65.8; H, 3.4; N, 18.3. Found: C, 65.5; H, 3.4; N, 18.3.

13k: mp 243–245°C (dioxane); yield 1.49 g (72%); δ (DMSO-d$_6$) 7.1–8.6 (m, 15H), 9.1 (s, 1H) ppm; v (KBr) 1720 (C=O), 1650 (C=O) cm$^{-1}$. Anal. Calcd for $C_{26}H_{16}N_4O_2$: C, 75.0; H, 3.8; N, 13.4. Found: C, 74.8; H, 3.6; N, 13.2.

13l: mp 250–252°C (DMF); yield 1.30 g (70%); δ (DMSO-d$_6$) 6.8–8.5 (m, Ar-H) ppm; v (KBr) 1710 (C=O) cm$^{-1}$; ms m/z 373, 343, 266, 234, 218, 177, 169, 130, 118, 102, 90, 77, 51. Anal. Calcd for $C_{19}H_{11}N_5O_4$: C, 61.0; H, 2.9; N, 18.7. Found: C, 60.7; H, 3.2; N, 18.5.

13m: mp 245–247°C (acetic acid); yield 1.43 g (75%); δ (DMSO-d$_6$) 7.0–8.6 (m, Ar-H) ppm; v (KBr) 3350 (NH), 1710 (C=O), 1680 (C=O) cm$^{-1}$. Anal. Calcd for $C_{22}H_{15}N_5O_5$: C, 69.3; H, 3.9; N, 18.4. Found: C, 69.5; H, 4.2; N, 18.1.

Preparation of 1-(p-nitrophenyl)-3-methyl-1,2,4-triazolo[3,4-b]quinazolin-5-one 14a. A mixture of 1-(p-nitrophenyl)-3-methyl-4,5-dihydro-1,2,4-triazol-5-one (4.5 g, 20 mmol), anthranilic acid (3.0 g, 20 mmol) and phosphorus trichloride (30 ml) was heated under reflux for 4 h. The excess phosphorus trichloride was distilled off and the residue was washed with sodium hydroxide (10%) and finally with water. The solid formed was crystallized from ethanol to give 14a, mp 293°C [Lit. mp 293°C].

REFERENCES
5. H. Rupe, Ber. 1897, 30, 1098.

Received, 15th March, 1995