A STEREOCONTROLLED SYNTHESIS OF PIRONETIN

Mukund K Gurjar*, Anjan Chakrabarti, and A. V. Rama Rao

Indian Institute of Chemical Technology
Hyderabad 500 007, India

Abstract - The total synthesis of potent immunosuppressive agent - pironetin (PA-48153c) was achieved using highly stereocontrolled reactions.

In 1993, Yoshida1 and Kobayashi2 and their coworkers independently isolated pironetin (PA-48153c) (1) from the fermentation broths of *Streptomyces prunicolor* PA-48153 and *Streptomyces sp.* NK 10958 respectively. The natural product (1) showed a wide range of biological properties such as immunosuppressive, antitumour, and antifungal activities. A number of immunosuppressants have been developed some of which are in clinical use such as cyclosporin A (CsA) and FK-506.3 Because of their weak and adverse effects, there is a desire to develop new immunosuppressive agents having different mode of action than those observed for CsA and FK-506. The natural product (1) fulfils this criteria. Structural modifications of 1 by synthesis to reduce its toxicity are being actively pursued.4 Structural examination of 1 revealed that all syn stereochemistries are present in pairs represented by C₅-C₆, C₇-C₈ and C₁₀-C₁₁ units. For the introduction of these stereochemical centres, we have explored Evans asymmetric aldol, regiospecific reductive opening of C₄-branched tertiary epoxide and Grignard (nucleophilic substitution) reaction to complete the total synthesis of 1 (Scheme 1).

The (2S,3R)-epoxy-alcohol (3) was prepared from propargyl alcohol (2) in six high yielding steps.5 Subsequent Grignard reaction of 3 using EtMgBr in the presence of CuI at -40 °C6 followed by periodate oxidation and isopropylidation provided 4 in 70% yield. At this stage, the benzyl group was cleaved...
quantitatively by hydrogenolysis using Ca/liq. NH₃⁷ and then the primary hydroxyl group was oxidized under Swern conditions to provide the aldehyde (5) in 85% yield. The Evans asymmetric aldol reaction⁸ employing (S)-4-benzyl-3-propionyl-2-oxazolidinone in the presence of Bu₂BOTf at -78 °C gave 6.

Scheme 2

Reagents - a) Ref. 5; b) (i) EtMgBr, cat. CuI, THF-Et₂O (1:5), -40 °C, 30 min; ii) NaIO₄, THF-H₂O (1:1), 1 h; iii) Me₂C(OEt)₂, MeCOMe, cat. H₂SO₄, 30 min; c) (i) Ca, liq.NH₃, -33 °C, 2 h; ii) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C, 1 h; d) (S)-4-benzyl-3-propionyl-2-oxazolidinone, Bu₂BOTf, Pr₂NEt, CH₂Cl₂, -78 °C, 5 h; e) (i) TBS-OTf, 2,6-lutidine, CH₂Cl₂, 0 °C, 10 min; ii) LiBH₄, MeOH, THF, 0 °C - room temperature, 4 h; f) (i) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78 °C, 1 h, ii) Ph₃P=C(Me)CO₂Et, C₆H₅, room temperature, 6 h; g) DIBAL-H, CH₂Cl₂, -78 °C, 15 min; h) mCPBA, CH₂Cl₂, -20 °C, 4 h; i) NaBH₄, 2M BH₃·SMe₂, THF, 24 h; j) (i) Me₃CCOCl, Py, CH₂Cl₂, room temperature, 3 h; (ii) KH, MeOTf, THF, 0 °C, 1 h; (iii) Dibal-H, CH₂Cl₂, -78 °C, 10 min; k) (i) Ph₃P, CBr₄, CH₂Cl₂, room temperature, 10 h; ii) KCN, 18-Crown-6, MeCN, Δ, 3 h; (iii) Dibal-H, C₆H₅-Me, -78 °C, 1 h; l) Ph₃P+EtBr⁻, BuLi (2 eq), -78 °C → -30 °C, THF, tBuOH, KOtBu, -78 °C → 0 °C, 1 h; (m) (i) HCl-MeOH, 0 °C, 1 h; (ii) Me₃CCOCl, Py, CH₂Cl₂, room temperature, 1 h; (iii) TBS-OTf, 2,6-lutidine, CH₂Cl₂, 0 °C, 15 min; iv) Dibal-H, CH₂Cl₂, -78 °C, 5 min; n) i) IBX, DMSO, room temperature, 30 min; ii) (CCl₃CH₂O)₂P(O)CH₂CO₂Et, NaH, DMF, -40 °C, 6 h; o) 1% HCl-EtOH, room temperature, 12 h.
The diastereomeric purity (95%) of 6 was determined by \(^1\)H nmr spectral studies. The free hydroxyl in 6 was silylated with TBS-OTf and consequently reduced with LiBH\(_4\) to afford 7 (45% overall yield from 5). Oxidation followed by Wittig reaction with Ph\(_3\)P-C(Me)CO\(_2\)Et and DIBAL-H reduction at -78 °C gave the allylic alcohol (9) in 78% yield. Treatment of 9 with mCPBA in CH\(_2\)Cl\(_2\) at -20 °C cleanly produced the epoxide (10) in 96% yield as a single product. The predicted stereochemistry of 10 was \textit{anti}, based on several literature precedents of ours as well as others.\(^9\) Compound (10) was treated with NaBH\(_4\) and BH\(_3\):SMe\(_2\) in THF at room temperature to afford 11 in 81% yield. The C\(_4\)-branching in 10 effected regiospecific and stereospecific reduction of epoxide to occur at C-2 giving rise to \textit{syn} derivative (11).\(^11\) Compound (11) was converted into (12) by pivaloylation, methylation and depivaloylation in 81% yield. The structure of 12 was supported by \(^1\)H nmr and mass spectral analysis (Scheme 2).

At this stage, introduction of \(E\)-propenyl group was considered. The transformation of 12 into 13 a three step sequence was a straightforward exercise in 71% yield which was followed by Wittig reaction with Ph\(_3\)P=CHMe under Schlosser's conditions\(^12\) to give (\(E\))-product (14) in 56% yield, the structure of which was confirmed by chemical means.\(^13\) Our next concern was to elaborate the 5,6-dihydro-\(2H\)-pyran-2-one system. Accordingly, 14 was converted into 15 in 92% yield by protection-deprotection sequence followed by oxidation of primary hydroxyl with IBX-DMSO system\(^14\) and modified Wittig reaction\(^15\) with (CCl\(_3\)CH\(_2\)O)\(_2\)P(O)=CHCO\(_2\)Et at -40 °C in DMF to give 16 in 78% yield whose structure was proved by characteristic coupling constants of olefinic protons (J=11.0 Hz). Finally, treatment of 16 with 1% HCl in EtOH cleaved both the TBS-groups followed by concomitant lactonisation to give PA 48153c (pironetin) in 90% yield whose \(\^1\)H nmr spectrum,\(^16\) mp and \{[\alpha]_D\} -1330 (CHCl\(_3\)), lit., -136.60 and -142.80 (CHCl\(_3\)) was comparable to the reported data of 1.

ACKNOWLEDGMENTS

AC acknowledges the financial support of CSIR, New Delhi.

REFERENCES AND FOOTNOTES

13. The same product (14) was also obtained from 13 as follows:

16. 1H Nmr (CDCl$_3$, 200 MHz) data of selected compounds: Compound (4) - δ 0.86 (t, 3H, J=7.4 Hz), 1.24, 1.33 (2s, 6H), 1.5-1.8 (m, 3H), 3.42 (m, 2H), 3.68 (dd, 1H, J=1.0, 12.0 Hz), 3.85 (dd, 1H, J=2.4, 12.0 Hz), 4.08 (m, 1H), 4.40 (ABq, 2H, J=14.0, 22.0 Hz), 7.20 (s, 5H), Compound (7) - δ 0.06, 0.07 (2s, 6H), 0.74 (d, 3H, J=7.0 Hz), 0.87 (s, 9H), 0.93 (t, 3H, J=7.0 Hz), 1.39, 1.49 (2s, 6H), 1.55-1.75 (m, 2H), 1.91 (m, 1H), 3.45 (dd, 1H, J=4.4, 10.0 Hz), 3.60 (dd, 1H, J=8.0, 10.0 Hz), 3.74 (dd, 1H, J=1.0, 12.0 Hz), 3.80 (m, 1H), 3.88 (dd, 1H, J=2.0, 12.0 Hz), 3.98 (m, 1H), Compound (12) - δ 0.06 (s, 6H), 0.69 (d, 3H, J=6.7 Hz), 0.78 (d, 3H, J=6.7 Hz), 0.91 (t, 3H, J=6.5 Hz), 1.24, 1.35 (2s, 6H), 1.3-1.9 (m, 7H), 3.26 (dd, 1H, J=2.0, 8.9 Hz), 3.37 (s, 3H), 3.53 (d, 1H, J=6.6 Hz), 3.68 (br d, 1H, J=12.4 Hz), 3.84 (m, 2H), 3.97 (m, 1H), Compound (15) - δ 0.08 (s, 12H), 0.75 (d, 3H, J=7.0 Hz), 0.80 (d, 3H, J=7.0 Hz), 0.89 (s, 18H), 0.98 (t, 3H, J=7.2 Hz), 1.45-2.25 (m, 9H), 1.66 (d, 3H, J=5.5 Hz), 3.14 (br d, 1H), 3.44 (s, 3H), 3.59 (m, 2H), 3.96 (m, 2H), 5.39 (m, 2H), Compound (1) - δ 0.95-1.0 (m, 9H), 1.5-1.85 (m, 7H), 1.67 (d, J=6.0 Hz, 3H), 2.10 (m, 1H), 2.30 (m, 1H), 2.98 (dd, J=6.3, 4.3 Hz, 1H), 3.47 (s, 3H), 4.20 (br d, 1H), 4.74 (m, 1H), 5.38 (m, 2H), 6.03 (d, J=11.0 Hz, 1H), 7.01 (dd, J=9.3, 6.0 Hz, 1H).

Received, 15th August, 1996