SYNTHESIS OF HOMOCHIRAL β-SULFINYL NITRONES AND THEIR APPLICATION FOR ENANTIOSELECTIVE SYNTHESIS OF (+)-EUPHOCOCCININE†

Shun-Ichi Murahashi,* Jun Sun, Hiroyuki Kurosawa, and Yasushi Imada

Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama 1-3, Toyonaka, Osaka 560-8531, Japan

Abstract — Homochiral β-sulfinyl nitrones can be prepared from secondary amines in three steps. Enantioselective synthesis of defensive alkaloid (+)-euphococcinine (9) has been accomplished by means of diastereoselective allylation of homochiral β-sulfinyl nitrone (13) followed by intramolecular 1,3-dipolar cycloaddition reaction.

Optically active sulfoxides are versatile intermediates for asymmetric synthesis.1 During the course of our study for introduction of substituents at the α-position of secondary amines via nitrones,2 we have found that optically active α-substituted secondary amines (5) can be prepared from secondary amines (1) using optically active sulfoxides as chiral auxiliaries as shown in Scheme I (1 → 2 → 4 → 5).3 Thus, diastereoselective addition of the homochiral α-sulfinyl carbanion (3) to nitrones (2), prepared readily by the catalytic oxidation of secondary amines (1) with H2O2,2 gives optically active β-sulfinyl hydroxylamines (4), which are key intermediates for synthesis of optically active α-substituted secondary amines (5).

Scheme I

† This paper is dedicated to Prof. Teruaki Mukaiyama on the occasion in his 73rd birthday.
We wish to report here a convenient method for synthesis of homochiral \(\beta \)-sulfinyl nitrones (6) from secondary amines (1) and its application for synthesis of \(\alpha,\alpha \)-disubstituted hydroxylamines (7), which are precursors of \(\alpha,\alpha \)-disubstituted secondary amines (8) bearing quaternary carbon \(\alpha \) to the nitrogen, by addition of nucleophiles to 6 as shown in Scheme I. Furthermore, we report the usefulness of these reactions for enantioselective synthesis of homotropane alkaloid, (+)-euphococcinine (9) and the precursor of (-)-adaline (10).

\[\text{(+)-Euphococcinine (9)} \quad \text{(-)-Adaline (10)} \]

2,3,4,5-Tetrahydroxyridine N-oxide (11) was prepared in 88\% yield by the SeO\(_2\)-catalyzed oxidation of piperidine with H\(_2\)O\(_2\).\(^{2a}\) Addition of (R)-p-tolylsulfinylmethyl lithium (3), prepared by the reaction of (R)-methyl p-tolyl sulfoxide\(^4\) with LDA, to the nitro (11) in THF at \(-78^\circ\text{C}\) gave a diastereomeric mixture of \(\beta \)-sulfinyl hydroxylamines (12) (67:33) in 52\% yield. Selective oxidative transformation of 12 to the corresponding nitro is very difficult, because competitive oxidation of the sulfinyl group would occur.

We found that the biomimetic oxidation of 12 with a H\(_2\)O\(_2\) solution in the presence of 3 mol % of 5-ethylumiflavinium perchlorate (FeEt\(^{+}\)ClO\(_4\)\(^{-}\)) as a catalyst in MeOH at 0\°C proceeded chemoselectively.\(^5\) Short column chromatography gave (SR)-2-(p-tolylsulfinylmethyl)-2,3,4,5-tetrahydroxyridine N-oxide (13) ([\(\alpha\)]\(_D\)\(^{23}+89.4^\circ\) (c 0.595, CHCl\(_3\))) in 55\% yield. Alternatively, the oxidative transformations were performed upon treatment of \(\beta \)-sulfinyl hydroxylamines with magnesium monoperxyphthalate (MMPP)\(^6\) in MeOH at -20\°C or Ni\(_2\)O\(_3\) in CHCl\(_3\) at room temperature. Homochiral \(\beta \)-sulfinyl nitro (16) ([\(\alpha\)]\(_D\)\(^{23}+55.8^\circ\) (c 0.645, CHCl\(_3\))) and isooquinoline derivative (19) ([\(\alpha\)]\(_D\)\(^{23}+58.6^\circ\) (c 1.90, CHCl\(_3\))) were prepared from pyrrolidine and 1,2,3,4-tetrahydroisoquinoline in 44\% and 50\% overall yields, respectively, using similar procedure.

\begin{align*}
\text{(a) H}_2\text{O}_2, \text{SeO}_2 \text{ (cat.), acetone, rt, (b) 3, THF, -78^\circ\text{C}, (c) H}_2\text{O}_2, \text{FeEt}^{+}\text{ClO}_4^{-} \text{ (cat.), MeOH, 0^\circ \text{C}}
\end{align*}

\[\text{(CH}_2)_n \text{N} \quad \text{a} \quad \text{(CH}_2)_n \text{N-O}^{-} \quad \text{b} \quad \text{(CH}_2)_n \text{N-} \quad \text{c} \quad \text{(CH}_2)_n \text{N-O}^{-} \quad \text{(a) H}_2\text{O}_2, \text{SeO}_2 \text{ (cat.), acetone, rt, (b) 3, THF, -78^\circ\text{C, (c) H}_2\text{O}_2, \text{FeEt}^{+}\text{ClO}_4^{-} \text{ (cat.), MeOH, 0^\circ \text{C}}}
\]
We investigated diastereoselective addition of nucleophiles to homochiral β-sulfinyl nitrones. First, we examined the diastereoselective addition of hydrides. The reaction of nitrone (19) with diisobutylaluminum hydride (DIBALH) at -78 °C gave a diastereomeric mixture of 18a and 18b with a 95:5 ratio in 59% yield. Noteworthy is that the reverse diastereoselectivity was observed, when the reaction of 19 with DIBALH was performed in the presence of AlCl₃, affording a mixture of 18a and 18b with a 10:90 ratio in 96% yield. The observed reverse diastereoselectivity can be rationalized by assuming the chelation of AlCl₃ to both the oxygen of the nitrone and the oxygen of the sulfinyl group. Each of the stereoisomers (18a) (mp 154.0–155.0 °C, [α]D₂₆ +106.6° (c 1.31, acetone)) and (18b) (mp 92.0 °C, [α]D₂₆ +56.5° (acetone)) was obtained as an enantiomerically pure crystalline after column chromatography and subsequent recrystallization.

Next, we examined the diastereoselective addition of carbon nucleophiles to homochiral β-sulfinyl nitrones. Actually, this method is useful for synthesis of optically active α,α-disubstituted hydroxylamines and can be applied to the enantioselective synthesis of defensive alkaloid, (+)-euphococcinine (9), and the precursor of (-)-adaline (10). The compound (9) has been found as the part of the chemical defense system of both Australian mealybug ladybird (Cryptolaemus montrouzieri)⁷ and Mexican bean beetle (Epilachna varivestis)⁸ and are proven feeding deterrents to spiders and ants. The poor availability in nature (15 μg of 9 per specimen) and their interesting and potentially useful activity have prompted a number of approaches to the synthesis of these compounds.⁹ Asymmetric syntheses of these alkaloids have been performed by two methods; i) diastereoselective double Michael addition of (+)-α-methylbenzylamine to 3-alkyl-2,7-
cyclooctadienones10 and ii) diastereoselective formation of a quaternary carbon α to the piperidine nitrogen and subsequent intramolecular Mannich reaction.11

The reaction of β-sulfinyl nitrene (13) with allylmagnesium bromide in the presence of AlCl$_3$ afforded a mixture of (2S,SR)-2-allyl-N-hydroxy-2-(p-tolylsulfinylmethyl)piperidine (20a) and its 2R-isomer (20b) (83:17). Column chromatography of the mixture gave enantiomerically pure 20a ([α]$_D^{24}$ +74.8° (c 1.71, CHCl$_3$)) and 20b ([α]$_D^{24}$ +17.2° (c 0.79, CHCl$_3$)) in 54% and 6% yields, respectively. Treatment of the hydroxylamine (20a) with Ni$_2$O$_3$ and subsequent intramolecular 1,3-dipolar cycloaddition of the resulting nitrene (21a) gave (1S,3R,5R,SR)-1-(p-tolylsulfinylmethyl)-10-oxa-9-azatricyclo[3.3.1.139]decane (22a) ([α]$_D^{22}$ +150.6° (c 0.840, CHCl$_3$)) in 54% isolated yield. Reductive cleavage of both the sulfinyl group and the N—O bond of 22a upon treatment with Raney Ni (W-2) gave the bicyclic alcohol (23) in 95% yield. Oxidation of the alcohol (23) with pyridinium chlorochromate (PCC) gave (+)-euphococcinine (9) ([α]$_D^{24}$ +7.43° (c 0.350, MeOH))12 (lit.,10 [α]$_D$ +7.5° (c 2.0, MeOH)), of which spectral properties were identical with those reported.10,11 Similarly, the oxidation of 20b with Ni$_2$O$_3$ followed by 1,3-dipolar cycloaddition gave 1R,3S,5S,SR-tricyclic adduct (22b) ([α]$_D^{21}$ +170.4° (c 0.365, CHCl$_3$)) in 51% yield, which is a potential precursor of (+)-adaline (10).

\begin{scheme}
\begin{center}
\includegraphics[width=\textwidth]{scheme.png}
\end{center}
\end{scheme}

(d) AlCl$_3$, CH$_2$=CHCH$_2$MgBr, THF, -78 °C (54%), (e) Ni$_2$O$_3$, CHCl$_3$, rt (54%), (f) Raney Ni (W-2), H$_2$O, 30 °C (95%), (g) PCC, CH$_2$Cl$_2$, rt (30%)

In conclusion, we have established the method for synthesis of optically active β-sulfinyl nitrones and showed the usefulness of these nitrones for enantioselective synthesis of homotropane alkaloids. This strategy will be applied for synthesis of various nitrogen-containing heterocyclic compounds bearing asymmetric quaternary carbon α to the nitrogen.
ACKNOWLEDGMENT

This work was supported by "Research for the Future" Program, the Japan Society for the Promotion of Science, and a Grant-in-Aid for Scientific Research, the Ministry of Education, Science, Sports and Culture of Japan.

REFERENCES AND NOTES

1. For a recent review, see: M. C. Carreño, Chem. Rev., 1995, 95, 1717.

12. All compounds were characterized by 1H (270 MHz) and 13C NMR (68 MHz), IR, and HRMS. The ratios of diastereomers were determined by 1H NMR spectroscopy of the crude and purified products. Data for (+)-euphococcinine (9) are as follows: 1H NMR (CDCl$_3$) δ 1.18 (s, 3 H), 1.40–1.85 (m, 6 H), 2.23 (d, $J = 16.0$ Hz, 1 H), 2.39 (ddd, $J = 16.5, 11.9, 1.8$ Hz, 2 H), 2.56 (d, $J = 16.0$ Hz, 1 H), 3.60 (m, 1 H); 13C NMR (CDCl$_3$) δ 17.9, 31.0, 31.4, 38.4, 46.0, 49.8, 52.5, 53.3, 210.4. HRMS (EI) m/z Found: 153.1154. Calcd for C$_9$H$_{15}$NO: 153.1154.

Received, 6th May, 1999