A FACILE SYNTHESIS OF
1-(2-TETRAHYDROFURYL)-5-FLUOROURACIL (FTORAFUR)

Tetsuji Kametani *

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai, Japan

Kazuo Kigasawa, Mineharu Hiiragi, Kikuo Wakisaka,
Osamu Kusama, Hideo Sugii, and Kumeo Kawasaki

Research Laboratories, Grelan Pharmaceutical Co. Ltd.,
Sakurashinmachi, Setagaya-ku, Tokyo, Japan

1-(2-Tetrahydrofuryl)-5-fluorouracil (1), a potent
anti-tumor agent, was conveniently synthesized by the
the condensation of 5-fluorouracil (2) with vari-
ous 2-alkoxy-2,3,4,5-tetrahydrofurans (3a-j), and the
best yield of 1, by this method was obtained in the
reaction of 2-t-butoxy analog (3h).

1-(2-Tetrahydrofuryl)-5-fluorouracil (1, Ftorafur) is a clinica-
ly effective anti-tumor agent which functions a nucleic acid anta-
gonist. There are many reports on the synthesis of 1,1,2 and we also
examined a simple preparation of this compound. Now we wish to
report an alternative synthesis of 1.

The Hilbert-Johnson procedure has been a representative method
to prepare pyrimidine nucleosides, and applied by Russian chemist1)
to the first synthesis of 1 by the reaction of 2-chlorotetrahydro-
furan (4) with 2,4-bis(trimethylsilyloxy)-5-fluorouracil (5). The mercury salt of 2 was also used instead of 5. Although several kinds of alternative syntheses of 5 by a reaction of some 2-alkoxy-2,3,4,5-tetrahydrofurans with 5 or 2 in the presence of acidic catalysts, were widely investigated, these methods have some defects in which unstable material was an intermediate and the process needed a severe condition.

Scheme 1

\[\text{TMS=trimethylsilyl} \]

In order to explore a simplified synthesis of 5, we examined a condensation of 2 with various 2-alkoxy-2,3,4,5-tetrahydrofurans (3a-j)\(^{3}\) without using any catalysts. Heating 2 (1 g, 7.7 m mol) and 3a-j (11.6 m mol) at 150 - 165\(^{\circ}\) in dimethylformamide for 4 - 5 hr afforded successfully 5 (mp 164 - 165\(^{\circ}\); lit.,\(^{2}\) mp 164 -
165°) by simple work-up, namely evaporation of the solvent, followed by recrystallization. Among several 2-alkoxytetrahydrofurans (3a-j), the highest yield of 1 was obtained in case of 2-t-butoxytetrahydrofuran (3h).

Scheme 2

Table 1 The Yield of the Reaction of 2 with 3a-j

<table>
<thead>
<tr>
<th>Starting furans (3a-j)</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield of 1 (%)</td>
<td>2.5</td>
<td>12.3</td>
<td>13.0</td>
<td>15.0</td>
<td>9.1</td>
<td>7.8</td>
<td>15.6</td>
<td>67.0</td>
<td>8.1</td>
<td>5.2</td>
</tr>
</tbody>
</table>

This reason would be due to the t-butoxy group of 3h which is more susceptible to its elimination than those of the others. However, the reaction of 2 with 3h in the presence of Lewis acid...
(AlCl$_3$) gave a less yield of 1 (25%). Prolongation of the reaction time and addition of more excess of 3 in these reactions improved the yield of 4, but the best yield of 4 was again observed with using 4h. A detailed investigation of these reaction products revealed that a small amount of 2,4-bis(2-tetrahydrofuryl)-5-fluorouracil [5, mp 104 – 106$^\circ$; mass (m/e) 270 (M$^+$)] was also obtained. Hydrolysis of 5 by means of acetic acid yielded 4 quantitatively.

Thus, a facile synthesis of 4 is now available. The application of this procedure would provide a new class of preparative method of pyrimidine nucleosides.

ACKNOWLEDGEMENT

We thank Dr. K. Fukumoto, Pharmaceutical Institute, Tohoku University for his kind suggestion.

REFERENCES

3) These compounds were easily prepared by the addition of the

Received, 15th February, 1977