HISPANOLONE, A NEW FURANODITERPENE

Giuseppe Savona and Franco Piozzi

Institute of Organic Chemistry, University of Palermo
20, via Archirafi - 90123 Palermo (Italy)

and

Benjamin Rodriguez

Institute of Organic Chemistry, C.S.I.C.
3, Juan de la Cierva, Madrid-6 (Spain)

Hispanolone, a new furanoditerpene occurring in
Ballota hispanica (Labiatae), is attributed the
structure [I] with normal labdane skeleton.

Continuing our examination of Mediterranean Labiatae and spe-
cially of the genus Ballota, we have started with the investiga-
tion of Ballota hispanica Neck. ex Nym. (= Ballota hirsuta Benth.)
growing in Spain. We refer here on the structure of a new furano-
diterpene, hispanolone, occurring in this species.

Hispanolone is a crystalline product, m.p. 142–144° (from pet.
ether-AcOEt), $[\alpha]_D^{22}\circ = 17.6°$ (CHCl$_3$; c, 0.33). Elemental analysis
and MS agree with the C$_{20}$H$_{30}$O$_3$ formula. The IR spectrum shows
bands at 3450 (OH), 1690 (C=O) and 875 cm$^{-1}$ (furan). The occur-
rence of a β-substituted furan ring is supported by the typical
NMR signals (100 MHz, CDCl$_3$) at 6.22, 7.18 and 7.30 δ; other sig-
nals include three singlets of tertiary methyl groups at 0.87,
0.90 and 1.17 δ, a doublet for a secondary methyl at 1.11 δ (J
6.5 Hz) coupled with a quartet of a methine proton at 2.72 δ;
this signal collapses into a singlet on irradiation at 1.11 δ;
a complex pattern for two protons (AB part of an ABX system) oc-
curs in the 2.27–2.59 δ region.
The mass spectrum of hispanolone shows prominent peaks at 318 (M⁺), 194, 123, 109, 95 and 81 m/e.

As other species of the same genus (*B. nigra* subsp. *foetida* and *B. rupestris*) contain¹⁻³ furanoditerpenes similar to marrubiin and marrubenol but carrying an additional keto group on position C-7, the above reported data suggest the structure and the stereochemistry depicted in [I] for hispanolone.

The configuration of the secondary methyl on C-8 must be equatorial, as supported by the coupling constant of the doublet (J 6.5 Hz): an axial methyl group should have a larger value (J 8 Hz)⁴. The determination⁵ of CD on hispanolone shows a negative Cotton effect at 287 nm, Δε₂₈⁷ = -0.98°, [θ]₂₈⁷ = -3210° (EtOH; c, 0.259); this result is better consistent with an equatorial 8α-CH₃ than with an axial 8β-CH₃ configuration: compare the data reported⁴ for product [II], $[\theta]_{290}^{20}= -1820°$ (MeOH) and for product [III], $[\theta]_{289}^{20} = -6570°$ (MeOH).

The reduction of hispanolone with NaBH₄ in EtOH-dioxane (1:1) solution gives a mixture of the two epimeric alcohols, separable by preparative TLC. The first product (60% yield) has m.p. 128-130° (from acetone-hexane), $[\alpha]_{D}^{27}= 6.6°$ (CHCl₃; c, 0.21); MS 320 m/e (M⁺); IR 3300 cm⁻¹ (broad, OH), no C=O absorption; NMR (100 MHz, CDCl₃) 3.84 δ (four lines, $J_{aa}= J_{aa''}= J_{ee} = 3.5$ Hz, equatorial 7b-H): hence the product has the structure [IV]. The second product (40% yield) has m.p. 102-105° (from hexane), $[\alpha]_{D}^{27}= +13.8°$ (CHCl₃; c, 0.18); MS 320 m/e (M⁺); IR 3450 cm⁻¹ (OH), no C=O absorption; NMR (100 MHz, CDCl₃) 3.43 δ (six lines, $J_{aa}= J_{aa''}= 10.5$ Hz, $J_{ae} = 5$ Hz, axial 7α-H): hence the product has structure [V].

It is interesting to remark that the $[\alpha]_{D}$ values and the 7-H pattern of hispanolone and its reduction products closely parallel the values and the pattern found for villenolone [VI], a diterpene.
[I] \(R = 0 \)

[IV] \(R = 7\alpha\text{-OH, }7\beta\text{-H} \)

[V] \(R = 7\alpha\text{-H, }7\beta\text{-OH} \)

[VI] \(R = 0 \)

[VII] \(R = 7\alpha\text{-OH, }7\beta\text{-H} \)

[VIII] \(R = 7\alpha\text{-H, }7\beta\text{-OH} \)

[II] \(8\alpha\text{-CH}_3 \)

[III] \(8\beta\text{-CH}_3 \)

[X]
occurring in *Sideritis chamaedryfolia* (Labiatae), and for its reduction products, whose structures have been fully elucidated as [VII] and [VIII].

As the absolute configuration of villenolone was proved to be normal, these data bring further support to assign hispanolone the absolute configuration [I].

Table 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>[α]</th>
</tr>
</thead>
<tbody>
<tr>
<td>hispanolone [I]</td>
<td>-17.6°</td>
</tr>
<tr>
<td>7α-OH alcohol [IV]</td>
<td>-6.6°</td>
</tr>
<tr>
<td>7β-OH alcohol [V]</td>
<td>+13.8°</td>
</tr>
<tr>
<td>villenolone [VI]</td>
<td>-4.1°</td>
</tr>
<tr>
<td>7α-OH alcohol [VII]</td>
<td>-10.4°</td>
</tr>
<tr>
<td>7β-OH alcohol [VIII]</td>
<td>+22.9°</td>
</tr>
</tbody>
</table>

A product with structure [I] had been obtained by Li/NH₃ reduction of "Leonotis compound Y" [IX], a diterpenoid occurring in *Leonotis leonurus* (Labiatae). The data of this reduction product, m.p. 145-146° (from benzene-hexane) and [α]D° = 19° (CHCl₃; c, 0.96), are in good agreement with those of hispanolone. As this product had been directly transformed into isoambreinolide, the absolute stereochemistry of hispanolone [I] is therefore proved.

We wish to draw the attention on the very strong peak occurring in the MS of hispanolone at 194 m/e: it has to be attributed to the C₁₁H₁₄O₃ fragment [X] arising from the retro Diels-Alder cleavage of the Δ₇,8 enolic form of [I].

All the products reported gave satisfactory elemental analyses.

The present work was supported in part by the Italian National Research Council (C.N.R.), Roma.
References

5. Courtesy of Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France.

Received, 5th November, 1977