THE REACTION OF 4-CHLOROQUINOLINE 1-OXIDE WITH ACTIVATED ACETYLENES: FURO[3,2-\text{c}]QUINOLINES

Persephone Canonne* and Gilles Lemay
Département de Chimie, Université Laval,
Cité Universitaire, Québec, Canada
and
Rudolph A. Abramovitch
Department of Chemistry and Geology
Clemson University, Clemson, SC 29631 U.S.A.

4-Chloroquinoline 1-oxide and ethyl phenylpropionate in boiling toluene give a mixture of 2- and 3-keto-alkylated products as well as ethyl 2-phenylfuro[3,2-\text{c}]quinoline-3-carboxylate. With ethyl acetylenedicarboxylate only low yields of the 2-keto-alkylated product and of the furoquinoline were formed. This is to be contrasted with the observation that 4-chloropyridine 1-oxide and phenylcyanoacetylene or ethyl phenylpropionate give high yields of the corresponding furopyridine.

One of us1 has proposed that when a pyridine 1-oxide reacts with an activated acetylene the 1,2-dihydropyridine (1) first formed rearranges rapidly and reversibly to an array of dihydropyridines (Scheme 1). The nature of the product formed is determined by the nature of the substituents present in the pyridine ring: irreversible
elimination of a suitable substituent appropriately located in one of the intermediates will shunt the equilibrium in the direction of one particular product.

Evidence has been presented for the intervention of 8,2,3,2, 4,3,4 and 5 (see, however, ref. 4a for an alternate possibility). Evidence for the formation of 7 has been sought but not found in the reaction of benzyne with appropriately substituted pyridine 1-oxides.

It seems highly probable that, in addition to the nature and position of the leaving or blocking substituents, other structural factors will have an important influence on the nature and ratios of products formed in these reactions. For example, 2,3-fusion of a benzene ring to the pyridine should destabilize intermediates 8.
and \(\mathcal{A} \) and render formation of \(\mathcal{B} \) or \(\mathcal{C} \) highly unlikely. 3,4-Fusion, as in isoquinoline 2-oxides,\(^{4b}\) on the other hand, would almost certainly make formation of \(\mathcal{D}, \mathcal{E}, \mathcal{F}, \mathcal{G} \) and hence \(\mathcal{H} \), much less likely. It was, therefore, of interest to study the behavior of 4-chloroquinoline 1-oxide (12) to determine whether it would behave like 4-chloropyridine 1-oxide\(^{3}\) or like quinoline 1-oxide\(^{4b}\) which, with phenylcyanoacetylene, give 1-cyano-2-hydroxy-2-phenyl-1-(3-quinolyl)-ethylene (9; \(R = \text{CN}; X = \text{H} \)) (25.7 %), benzoyl(2-quinolyl)acetonitrile (10; \(R = \text{CN}; X = \text{H} \)) (11.3 %) and \(\alpha \)-cyanoquinolinium phenacylide (11\(\alpha \)) (8 %). Pyridine 1-oxide, on the other hand, gives a much higher yield (72.2 %) of \(\beta \)-substitution products in boiling benzene, with only a 2.5 % yield of \(\alpha \)-substitution product and 0.4.\% of ylide.\(^{4b}\)
When I was heated with ethyl phenylpropiolate in benzene at 70°C, the compound \(\mathcal{Q} \) \((X = \text{Cl}; R = \text{CO}_2\text{Et}) \) \(7\%\) \([\text{mp} 109-110^\circ\text{C}; \text{nmr} (\text{CDCl}_3) \delta 13.80 (\hat{\text{NH}}), 9.01 (s, 1, H_2), 8.60-7.02 (m, 9, ArH), 6.41 (s, \alpha-\text{CH}; \text{this suggests the presence of some keto form}), 4.37 (\text{overlapping quartets, 2, CH}_2), 1.26 (\text{overlapping triplets, 3, CH}_3; \text{the appearance of the ester protons also suggested the presence of some keto tautomer})\] and \(\mathcal{Q} \) \((X = \text{Cl}, R = \text{CO}_2\text{Et}) \) \(8\%\) \([\text{mp} 148-149^\circ\text{C}; \text{nmr} (\text{CDCl}_3) \delta 16.81 (\text{br s, 1, NH; exchanges with D}_2\text{O}), 8.40-7.32 (m, 10, ArH), 3.92 (q, 2, CH}_2), 0.76 (t, 3, CH}_3; \text{this compound is undoubtedly in the enaminoketone form} \mathcal{Q} \) \(8\%\) \([\text{mp} 148-149^\circ\text{C}; \text{nmr} (\text{CDCl}_3) \delta 16.81 (\text{br s, 1, NH; exchanges with D}_2\text{O}), 8.40-7.32 (m, 10, ArH), 3.92 (q, 2, CH}_2), 0.76 (t, 3, CH}_3)] \) were formed. When the reaction was carried out in boiling toluene, \(\mathcal{Q} \) \(1.7\%\) and \(\mathcal{Q} \) \(7\%\) were again obtained together with ethyl 2-phenylfuro[3,2-\(\text{Cl}\)-quinoline-3-carboxylate \(\mathcal{Q} \) \(6.2\% \) \([\text{mp} 132-133^\circ\text{C}; \text{nmr} (\text{CDCl}_3) \delta 9.30 (s, 1, H_4), 8.30-7.91 (m, 4), 7.70-7.22 (m, 5), 4.37 (q, 2, CH}_2), 1.42 (t, 3, CH}_3); \text{No ylide corresponding to} \mathcal{Q} \) \(7\%\) \([\text{mp} 91-92^\circ\text{C}; \text{nmr} (\text{CDCl}_3) \delta 13.96 (\text{br s, NH}), 8.55-6.88 (m, 5), 5.12 (s, 0.5, \alpha-\text{CH}), 4.55-4.00 (m, 4, CH}_2), 1.54-0.88 (m, 6, CH}_3)] \) and of the furo[3,2-\(\text{Cl}\)-quinoline \(\mathcal{Q} \) \(3.7\% \) \([\text{mp} 72.5-73.5^\circ\text{C}; \text{nmr} (\text{CDCl}_3) \delta 9.39 (s, 1, H_4), 8.46-8.15 (m, 2), 7.91-7.54 (m, 2) 4.56 (q, 4, CH}_2), 1.49 (t, 6, CH}_3)] \) were obtained.
The results suggest that, as expected, the 3,5-sigmatropic shift leading to \mathcal{A} is more difficult in this series than in the pyridine one, presumably because it would entail loss of aromaticity of the benzene ring, and that when ethyl phenylpropiolate is the reagent regiospecific ring opening of the cyclopropane ring in \mathcal{A} to give 3-alkylated product and the second 3,5-shift leading to \mathcal{B} (and thence to the furoquinoline) are more delicately balanced.

ACKNOWLEDGEMENTS This work was supported by a National Institutes of Health grant No GM 25242-01 to A. R. A. (which is gratefully acknowledged) and National Research Council of Canada (C. N. R. C.) grant to P. Canonne.

REFERENCES

7. All new compounds gave acceptable microanalyses and ir, nmr and mass spectral data.

Received, 24th May, 1978