SYNTHESIS OF PYRIMIDO[4,5-d]PYRIMIDINES

Yoshinori Tominaga, Hiroto Okuda, Yoshiro Mitsutomi, Yoshiro Matsuda, and Goro Kobayashi
Faculty of Pharmaceutical Sciences, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852, Japan
Kanro Sakemi
Kyushu Sankyo Co.Ltd., Himetaka-machi 526-1, Tosu, Saga 841, Japan

Abstract - 5-Aminopyrimido[4,5-d]pyrimidine-2,4(1H,3H)-diones were synthesized by the reaction of 6-aminouracil with dimethyl cyanoimidodithiocarbonate in the presence of potassium carbonate in dimethylformamide in good yields.

Many pyrimidopyrimidines were initially synthesized for a study of biological activity or physical properties because of close structural relationship of these systems to the quinazolines. We now wish to report synthesis of 5-aminopyrimido[4,5-d]pyrimidine-2,4(1H,3H)-diones by the reaction of 1,3-dialkyl-6-aminouracils with dimethyl cyanoimidodithiocarbonate (II). Condensation of 6-amino-1,3-dimethyluracil (Ia) with II in the presence of potassium carbonate in dimethylformamide on a steam bath for 4-5 hr gave a fused pyrimidine, 5-aminopyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione (IVA), colorless needles, mp 236°, in 72% yield. Raney-nickel desulfurization of IVa on a steam bath in ethanol afforded 5-amino-1,3-dimethylpyrido-[4,5-d]pyrimidine-2,4(1H,3H)-dione (V), colorless needles, mp 268°, which was also synthesized by treatment of methyl 6-amino-1,3-dimethyluracil-5-dithiocarboxylate (VI) with formamide at 150° for 5 hr in 45% yield. Compound VI was prepared by the reaction of Ia with carbon disulfide and dimethyl sulfate in the presence of sodium hydroxide in dimethylsulfoxide at room temperature. In the same method, other 5-aminopyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione derivatives (IVb, c) were obtained by the reaction of Ib, c with II in good yields.
Yields and Physical Properties of IV and V

IVa: Yield 72%, mp 236°. \(\text{IR}^{\text{KBr cm}^{-1}}: 3360(\text{NH}), 1710, 1650(\text{CO}). \text{UV}^{\text{EtOH nm}}(\log \varepsilon): 239(4.56), 281(4.22), 292(4.21). \text{NMR (in CDCl}_3+\text{CF}_3\text{COOH)}: 2.72(3\text{H, s, Sm}), 3.44(3\text{H, s, NMe}), 3.66(3\text{H, s, NMe}), 9.50(2\text{H, broad, NH}_2).\)

IVb: Yield 67%, mp 329°. \(\text{IR}^{\text{KBr cm}^{-1}}: 3360(\text{NH}), 1700(\text{CO}). \text{UV}^{\text{EtOH nm}}: 240, 282.

IVc: Yield 38%, mp 257°. \(\text{IR}^{\text{KBr cm}^{-1}}: 3380, 3280(\text{NH}), 1700, 1645(\text{CO}). \text{UV}^{\text{EtOH nm}}(\log \varepsilon): 240(4.54), 283(4.23).

V: Yield 45%, mp 268°. \(\text{IR}^{\text{KBr cm}^{-1}}: 3360(\text{NH}), 1700, 1650(\text{CO}). \text{UV}^{\text{EtOH nm}}(\log \varepsilon): 236(4.58), 294(3.74). \text{NMR (in CF}_3\text{COOH)}: 3.52(3\text{H, s, NMe}), 3.78(3\text{H, s, NMe}), 8.72(1\text{H, bs, NH}), 8.85(1\text{H, s, 7-H}), 9.73(1\text{H, bs, NH}).\)

References

Received, 16th January, 1979