THE SYNTHESIS OF BENZOLACTONES BY PALLADIUM CATALYZED CARBONYLATION

Miwako Mori, Katsumi Chiba, Nobuo Inotsume and Yoshio Ban

Faculty of Pharmaceutical Sciences, Hokkaido University,
Sapporo, 060 Japan

Phthalide was easily prepared from o-bromobenzyl alcohol in
the presence of a catalytic amount of Pd(OAc)$_2$ and PPh$_3$ under an
atmospheric pressure of carbon monoxide in a good yield. When a
large amount of PPh$_3$ was used as a ligand, a better result was
obtained. The six- and seven-membered benzolactones were
synthesized by the same procedure.

We have recently reported the new synthesis of benzolactams(2) by palladium
catalyzed carbonylation by a very simple procedure,1 which has been extended to
the total synthesis of the alkaloid, sendaverine.2 It might be readily
assumed that a similar treatment of o-bromo-ω-hydroxyalkylbenzene(3) would afford
benzolactones(4).

\[
\begin{align*}
\text{Br} & \quad \text{NHR} & \quad \text{Br} & \quad \text{OH} &
\end{align*}
\]

In the present paper, we describe a simple procedure of the synthetic method
of benzolactones(4) by use of this palladium catalyzed carbonylation.

** This paper is dedicated to Professor Emeritus Tetsuo Nozoe on the occasion
of his 77th birthday.
The typical procedure is demonstrated in the following: A whole mixture of 0-bromobenzyl alcohol (3a, 1 eq.), a catalytic amount of Pd(OAc)₂ (2 mol%), PPh₃ (4 mol%) and n-Bu₃N (3a, 1 eq.) was added to the reaction vessel connected to a balloon filled with a carbon monoxide and heated at 100° for 26 h to give the expected phthalide (4a, 19.6%, mp 73.5-75°) and o-carboxybenzyl alcohol (5, 4.9%). However, the yield was lower than that of the synthesis of five-membered benzolactam (2, n=1, R=CH₂Ph). Therefore, this reaction was surveyed under the various conditions (Table 1). It was turned out that the addition of a large amount of PPh₃ to the reaction mixture provided a good result and a higher temperature also increased the yield of the desired product (4a, 81.9%).

![Chemical structure](image)

Table 1. Carbonylation of 3a under the various conditions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>mol% of Pd(OAc)₂</th>
<th>mol% of PPh₃</th>
<th>Reaction Time (h)</th>
<th>Yield of 4a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100°</td>
<td>2.0</td>
<td>4.0</td>
<td>26</td>
<td>24.5*</td>
</tr>
<tr>
<td>100°</td>
<td>2.2</td>
<td>4.0</td>
<td>63.5</td>
<td>29.6</td>
</tr>
<tr>
<td>130°</td>
<td>2.2</td>
<td>5.3</td>
<td>26</td>
<td>56.4</td>
</tr>
<tr>
<td>130°</td>
<td>2.2</td>
<td>60.0</td>
<td>26</td>
<td>81.9</td>
</tr>
</tbody>
</table>

* The total yield of 4a and 5

Moreover, under similar conditions, six-membered benzolactone (4b, ν_max 1740 cm⁻¹, m/e 148(M⁺), 69.8%) and seven-membered benzolactane (4c, ν_max 1705 cm⁻¹, m/e 162 (M⁺), 41.6%) were also obtained from o-bromophenethyl alcohol (3b) and o-bromophenylpropyl alcohol (3c), respectively.
The reaction scheme might be considered as follows. It has been known that palladium (II) acetate could be reduced by carbon monoxide in the presence of the alcohol and a tertiary amine. Zerovallent palladium complex (6) should be inserted to aryl halide (3) afford the arylpalladium complex (7), which should be transformed to 9 via 8 by the insertion of carbon monoxide. The reductive elimination of palladium might give benzolactone (4) and zerovallent palladium (6).
These reactions are very useful because the starting material is readily available and carbon monoxide could be easily handled.

Further studies are in progress.

ACKNOWLEDGEMENT: This work was supported by a Grant-in-Aid for Scientific Research (No. 303023 and 367375) from the Ministry of Education, Sciences and Culture, Japan, which are gratefully acknowledged.

REFERENCES:

Received, 7th May, 1979