STUDIES ON HETEROCYCLIC ANALOGUES OF AZULENE. PART 5.
REARRANGEMENT OF 7H-6a-AZACYCLOBUTA(1)CYCLOPENT(1,2,3-cd)AZULENE RING SYSTEM ON SILICA GEL

Noritaka Abe and Tarozaemon Nishiwaki
Department of Chemistry, Faculty of Sciences, Yamaguchi University,
Yoshida, Yamaguchi 753, Japan

Abstract -- Rearrangement of 7H-6a-azacyclobuta(1)cytclopent(1,2,3-cd)-azulene ring system to 3H-2a-azacyclopenta[ef]heptalene ring system by contact with silica gel was reported.

It is known that contacts of some organic substances with adsorbents (e.g. alumina or silica gel) cause structural changes. Sometimes silica gel displays as catalyst in the isomerization reactions of olefines or bicyclic compounds. We now report that 7H-6a-azacyclobuta(1)cytclopent(1,2,3-cd)azulene ring system rearranges to 3H-2a-azacyclopenta[ef]heptalene ring system on silica gel.

Contact of 5-ethyl 8,9-dimethyl 6-chloro-7-phenyl-7H-6a-azacyclobuta(1)cytclopent(1,2,3-cd)azulene-5,8,9-tricarboxylate (18) with silica gel for 5 days at room temperature gave 1-ethyl 4,5-dimethyl 2-chloro-3-phenyl-3H-2a-azacyclopenta[ef]heptalene-1,4,5-tricarboxylate (28) as brown needles; mp 148-149°C (decomp.); 56% ; IR (nujol) 1725, 1705, and 1700 cm⁻¹ (C=O). In ¹H nmr spectrum (CDCl₃), two 1H singlets to be assignable to H-3 and H-6 are seen at δ 5.31 and 6.11, respectively. Another signals are seen at δ 1.36 (3H, t, J 7 Hz, CO₂C₂H₅), 3.59 (3H, s, CO₂C₃H₃), 3.84 (3H, s, CO₂CH₃), 4.23 (2H, q, J 7 Hz, CO₂C₂H₅), 5.95-6.2 (1H, m, H-9), 6.3-6.5 (2H, m, H-7,8), 7.30 (5H, m, phenyl), and 7.38 (1H, d, J 11 Hz, H-10). ¹³C nmr spectrum (CDCl₃) of 28 exhibits signal assignable to sp² carbon atom at δ 68.59 (d, C-3). The uv spectrum (λ_max^EtOH 228 (log ε 4.54), 260 (4.28), 434 (4.38), 492sh (3.95), 530 (3.74), and 570 nm (3.43) resembles that of 3H-2a-azacyclopenta[ef]heptalene ring system. From these results, we assigned the structure.

In a similar manner, 18 gave 28 as brown needles, mp 116-118°C, in 60% yield. On more active adsorbent (alumina), 18 underwent decomposition and gave no
obvious products.

Formation of the products (2) can be accommodated by a mechanism started by the scission of the bond between nitrogen and benzilic-carbon atoms of 1, followed by formation of 3 and intramolecular cyclization of 3 with association of silica gel.11 It is considered that adsorption of 1 on silica gel plays important roles which activates the bond between nitrogen and benzilic-carbon atoms of 1 and arranges to the suitable orientation for rearrangement to 2.11

ACKNOWLEDGMENT We thank Dr. M. Yasunami (Tohoku Univ.) and Dr. A. Mori (Kyushu Univ.) for nmr spectral determination.

REFERENCES AND NOTES

6. Merck Kieselgel 60 was used.
7. 1 was stable at room temperature but gave another rearranged products at reflux in benzene or xylene. These results were delineated in a separate paper.5
8. 2 was slightly unstable at room temperature in air or by prolonged contact with silica gel, and gave unidentified red substances.
10. Satisfactory elemental analyses and spectroscopical data other than partially given in this paper were obtained for all new compounds here described.
11. According to reference 3, catalytic activity of the commercial gels may result from traces of transition metals, most probably iron.

Received, 26th May, 1979