SYNTHESIS AND ACYLATION OF 2-(2,5-DIHYDRO-1,3-THIAZOL-2-YL)-2-PHENYL-
HYDRAZONOAETIC ACID ESTERS

Johann Gasteiger* and Ulrich Strauß

Organisch-Chemisches Institut, Techn. Universität München, D-8046 Garching,
West-Germany

Abstract: The preparation of 2-(2,5-dihydro-1,3-thiazol-2-yl)-2-phenyl-
hydrazonoacetic acid esters is described. Acylation of these compounds
occurs at the sulfur atom with concomitant opening of the dihydrothiazole
ring to yield 3-(2-acylthiovinylimino)-2-phenylhydrazono-butanoic acid
esters.

The understanding of multi-site nucleophilic reactivity is still in its infancy. Thus the experi-
mental investigation of electrophilic attack on model systems which offer various locations with
nucleophilic character is of great value. 3-Oxo-2-phenylhydrazono-butanoic acid esters (1) can, in
principle, be attacked at the oxygen atom, at carbon atom 2, and at both nitrogen atoms. Of these,
the oxygen atom and the nitrogen atom closest to the phenyl ring seem the most likely reaction
sites.

\[
\begin{align*}
\text{CH}_3 & \quad \text{O} \\
\text{C} & \text{O} \quad \text{C} \quad \text{R'} \\
\text{C}_6\text{H}_5 & \text{N} = \text{N} \quad \text{C} \\
\text{O} & \text{OR} \\
\text{CH}_3 & \\
\text{C} & \text{O} \\
\text{C}_6\text{H}_5 & \text{NH} \quad \text{N} \quad \text{C} \\
\text{O} & \text{OR} \\
\end{align*}
\]

Although attack at the oxygen atom should give a product 2 with the most extended conjugated system,
in the reaction of 1 with acid anhydrides/triethylamine in ether under catalysis by zinc chloride
only attack at the nitrogen atom is observed resulting in structures 3. \(^1,2\)

To complicate the situation we were aiming at acylation reactions at 2-(2-methyl-2,5-dihydro-
1,3-thiazol-2-yl)-2-phenylhydrazonoacetic acid esters 4.
These compounds 4 were obtained by reacting 3-amino-2-phenylazo-2-butenoic acid esters 5 with 2,5-dihydroxy-1,4-dithiane 6 in ether under catalysis by ammonia.

\[
\text{C}_6\text{H}_5 - \text{NH} - \text{H} = \text{C} = \text{C} \quad \text{OR} \\
\text{O} \\
\text{N} \quad \text{C} - \text{NH}_2
\]

Yields range between 75-85%. 4a: m.p. 99-100°C; C_{13}H_{19}N_{3}O_{2}S, (277.34); calc. C 56.39, H 5.45, N 15.15, found: C 56.60, H 5.57, N 15.34; IR(KBr): \(\nu\) = 3240, 1680, 1540, 1170 cm\(^{-1}\); \(\text{lH-NMR}(\text{CDCl}_3)\): \(\delta\) = 2.00 (s, 3H, CH\(_3\)-C2'), 3.73 (s, 3H, CO\(_2\)-CH\(_3\)), 4.05 (broad s, 2H, H\(_2\)-C5'), 6.7-7.3 (m, 5H, C\(_6\)H\(_5\)), 7.38 (broad s, 1H, HC4') ppm; \(\text{\text{\text{\text{13C-NMR}}}}\)(\text{CDCl}_3): \(\delta\) = 31.5 (CH\(_3\)-C2'), 46.7 (C5'), 51.3 (CO\(_2\)-CH\(_3\)), 93.3 (C2'), 114.2, 122.4, 129.2, 143.3 (C\(_6\)H\(_5\)), 128.4 (C2), 169.2 (C4'), 163.3 (CO\(_2\)-CH\(_3\)) ppm; MS(70eV): m/e = 277 (50%, M\(^+\)), 231 (52%, M\(^+\)-CH\(_3\)S), 230 (100%, M\(^+\)-CH\(_3\)), 199 (95%, M\(^+\)-CH\(_2\)-CH\(_3\)-OH), 172 (81%), 153 (76%), 104 (28%), 100 (44%), 92 (66%), 77 (64%), 65 (68%).

4b: m.p. 108°C; C\(_{14}\)H\(_{17}\)N\(_3\)O\(_2\)S (291.37); calc. C 57.71, H 5.88, N 14.42, found: C 57.69, H 6.19, N 14.34; IR(KBr): \(\nu\) = 3500, 3230, 1670, 1645, 1600, 1530, 1175 cm\(^{-1}\); \(\text{\text{\text{\text{1H-NMR}}}}\)(\text{CDCl}_3): \(\delta\) = 1.29 (t, 3H, CH\(_2\)-CH\(_3\)), 2.00 (s, 3H, CH\(_3\)-C2'), 4.11 (broad s, 2H, H\(_2\)-C5'), 4.23 (q, 2H, CH\(_2\)-CH\(_3\)), 6.8-7.4 (m, 5H, C\(_6\)H\(_5\)), 7.45 (broad s, 1H, HC4') ppm; \(\text{\text{\text{\text{13C-NMR}}}}\)(\text{CDCl}_3): \(\delta\) = 13.7 (CH\(_2\)-CH\(_3\)), 31.5 (CH\(_3\)-C2'), 46.6 (C5'), 60.4 (CO\(_2\)-CH\(_2\)-CH\(_3\)), 93.1 (C2'), 114.0, 122.2, 129.1, 143.0 (C\(_6\)H\(_5\)), 128.1 (C2), 159.0 (C4'), 162.9 (CO\(_2\)R) ppm. - MS(70eV): m/e = 291 (44%, M\(^+\)), 245 (52%, M\(^+\)-CH\(_2\)S), 244 (80%, M\(^+\)-CH\(_3\)), 199 (100, M\(^+\)-CH\(_2\)-CH\(_3\)-OH), 186 (81%), 168 (46%), 104 (28%), 100 (43%), 93 (63%), 92 (58%), 77 (59%), 65 (57%).
4c: m.p. 117°C; C_{16}H_{21}N_{3}O_{2}S (319.42); calc.: C 60.16, H 6.62, N 13.15, found: C 60.33, H 6.71, N 13.25. - IR(KBr): ν = 3320, 1670, 1655, 1320, 1150 cm⁻¹. - \(^1\)H-NMR(CDC\(_3\)): δ = 1.48 (s, 9H, C(CH\(_3\))\(_3\)), 1.92 (s, 3H, CH\(_3\)-C2'), 3.95 (broad s, 2H, H\(_2\)C5'), 6.6-7.2 (m, 5H, C\(_6\)H\(_5\)), 7.23 (broad s, 1H, HC4'), 12.0 (broad s, 1H, NH) ppm. - \(^{13}\)C-NMR(CDC\(_3\)): δ = 28.1(C(CH\(_3\))\(_3\)), 31.1(CH\(_3\)-C2'), 45.9(C5'), 82.1(C(CH\(_3\))\(_3\)), 93.1(C2'), 114.0, 122.0, 129.1, 143.3(C\(_6\)H\(_5\)), 129.0(C2), 158.3(C4'), 162.4(CO\(_2\)R) ppm. - MS(70eV): m/e = 319(25%, M\(^+\)), 272(7%, M\(^+\)-CH\(_3\)), 263(32%, M\(^+\)-C\(_4\)H\(_9\)), 217(72%), 216(80%), 199 (100%, M\(^+\)-CH\(_2\)-C\(_4\)H\(_9\)), 158(76%), 104(23%), 100(37%), 92(52%), 77(51%), 65(45%).

The 2-(2,5-dihydro-1,3-thiazol-2-yl)phenylhydrazonoacetic acid esters offer, besides the two nitrogen atoms and the carbon atom of the hydrazono group, two additional atoms for electrophilic attack: the sulfur atom and the nitrogen atom 3' of the ring system. The acylations were performed by refluxing 0.2 molar solutions of in dry ether for 12 hrs with 10 equiv. of acetic anhydride, 2 equiv. of triethylamine and a catalytic amount of zinc chloride. Contrary to 3-oxo-2-phenylhydrazono-butanoic acid esters the compounds do not react at the nitrogen atom closest to the phenyl ring, but attack occurs at the sulfur atom with concomitant opening of the ring system to give 3-(Z-2-acythiovinylimino)-2-phenylhydrazono-butanoic acid esters in 52-63% yield.

7a: m.p. 111°C; C\(_{15}\)H\(_{17}\)N\(_3\)O\(_2\)S (319.38); calc.: C 56.41, H 5.36, N 13.15, found: C 56.62, H 5.48, N 13.32. - IR(KBr): ν = 3450, 1705, 1600, 1500, 1220, 1115, 770 cm⁻¹. - \(^1\)H-NMR(CDC\(_3\)): δ = 2.32 (s, 3H, CH\(_3\)-C=N), 2.42 (s, 3H, CH\(_3\)-COS), 3.78 (s, 3H, CH\(_3\)O\(_2\)C), 6.63 (d, J=7.0 Hz, 1H, =CH), 6.9-7.5 (m, 6H, C\(_6\)H\(_5\)), 15.3 (s, 1H, NH) ppm. - \(^{13}\)C-NMR(CDC\(_3\)): δ = 17.9(CH\(_3\)-C=N), 30.7(CH\(_3\)OS), 51.9(CH\(_3\)O\(_2\)C), 116.1 (=C=S), 116.5, 124.3, 129.2, 143.4 (C\(_6\)H\(_5\)), 126.5 (C=N=N), 131.6 (=C=N), 162.0 (CH\(_3\)-C=N), 166.2 (CO\(_2\)R), 189.7(CH\(_3\)OS) ppm.

7b: m.p. 102-103°C; C\(_{16}\)H\(_{19}\)N\(_3\)O\(_2\)S (333.41); calc.: C 57.64, H 5.74, N 12.60, found: C 57.40, H 5.59, N 12.77. - IR(KBr): ν = 3450, 1695, 1500, 1270, 1105, 755 cm⁻¹. - \(^1\)H-NMR(CDC\(_3\)): δ = 1.35 (t, 3H, CH\(_3\)CH\(_2\)), 2.33 (s, 3H, CH\(_3\)-C=N), 2.45 (s, 3H, CH\(_3\)OS), 4.30 (q, 2H, CH\(_3\)CH\(_2\)), 6.70 (d, J= 7.0 Hz, 1H, =CH), 7.0-7.5 (m, 6H, C\(_6\)H\(_5\)), 13.0 (s, 1H, NH) ppm. - \(^{13}\)C-NMR(CDC\(_3\)): δ = 17.9(CH\(_3\)-C=N), 29.7(CH\(_3\)OS), 46.7(CH\(_3\)O\(_2\)C), 116.2 (C=N=N), 117.1, 124.3, 129.2, 143.4 (C\(_6\)H\(_5\)), 126.5 (C=N=N), 131.6 (=C=N), 162.0 (CH\(_3\)-C=N), 166.2 (CO\(_2\)R), 189.7(CH\(_3\)OS) ppm.

- 201 -
6.9-7.6 (m, 6H, C₆H₅, =CH), 15.2 (s, 1H, NH) ppm.

The thioester group is clearly established through the absorption at 189.7 ppm in the 13C-NMR spectrum. The cis-configuration in the olefinic part follows from coupling constant in the 1H-NMR spectrum (3J$_{HH}$ = 7.0 Hz).

The reaction 4\rightarrow7 is presumably initiated by the rearrangement of the 2,5-dihydro-1,3-thiazole compounds 4 to 2,3-dihydro-1,3-thiazole compounds 8 under catalysis by ZnCl$_2$.

For, the derivatives of 4 with two methyl groups at position 5' do not react with acid anhydrides under conditions where the reaction 4\rightarrow7 readily occurs. Steric hindrance of attack at sulfur by the two additional methyl groups does not seem to be able to completely explain this drastic fall-off in reactivity.

We thank Deutsche Forschungsgemeinschaft for financial support. Experimental assistance was provided by U. Leibl and K. Kaufmann.

References

2. J. Gasteiger and U. Strauß, unpublished results
3. P. Dubs and M. Pesaro, Synthesis, 1974, 294

Received, 22nd September, 1980