REACTION OF CYANOGÈNE BROMIDE WITH 1-(ω-HYDROXYALKYL)-1,3,4,6,7,11b-HEXAHYDRO-2H-BENZO[A]QUINOLIZINES AS A ROUTE TOANNELATED BENZAZECINE DERIVATIVES

John B. Bremner* and Narumol Thirasasana

Department of Chemistry, University of Tasmania, Box 252C, G.P.O., Hobart, Tasmania, Australia 7001.

Abstract — Treatment of 1-(2-hydr0xyethyl)-9,10-dimethoxy-1,3,4,6,7,11b-hexahydro-2H-benzo[a]quinolizine (4a) with cyanogen bromide in chloroform/potassium carbonate gave the new heterocyclic product, 11,12-dimethoxy-2,3,3a,5,6,8,9,13b-octahydro-2H-furo[3,2-g][3]benzazecine-7(4H)-carbonitrile (5a) in moderate yield. The corresponding octahydro-2H-pyrano[3,2-g]- and decahydrooxepino[3,2-g]-benzazecine-carbonitrile derivatives (5b and 5c) were prepared similarly from the appropriate reduced 1-(ω-hydroxyalkyl)-2H-benzo[a]quinolizines. Elimination products were also isolated in some cases.

A number of cyanogen bromide-mediated routes to fused medium-ring heterocyclic systems have recently been described. Further extensions of this work involving the conversion of 1-(ω-hydroxyalkyl)-hexahydro-2H-benzo[a]quinolizine derivatives to some new annelated benzazecines are now reported.

The amino alcohol substrates required (4a-c), were conveniently prepared by C-alkylation of the known enamine (2) from (1), followed by reduction of the resultant immonium salts (3) with lithium tetrahydroaluminate in one step or in a two-step sequence involving initial reduction with sodium tetrahydroborate (with 3b, R = CH3, X = OCH3).

Reaction (10 hr) of (4a) (1.72 m mole) with cyanogen bromide (3.43 m mole) in refluxing ethanol-free chloroform (100 ml) and in the presence of anhydrous potassium carbonate (8.6 m mole) gave the 2,3,3a,5,6,8,9,13b-octahydro-furo[3,2-g][3]benzazecine-7(4H)-carbonitrile (5a) (m.p. 204-205°C; 68% yield; M+ 316.1787) after preparative thin layer chromatography (silica gel impregnated with 0.5 M KOH; chloroform-5% methanol, v/v). Likewise, the reduced pyrano- and oxepino- analogues, (5b) (m.p. 136-137°C; 61% yield; M+ 330.1943) and (5c) (m.p. 133-134°C; 28% yield, M+ 344.2100) were prepared from (4b) and (4c) respectively; some of the elimination product (5c) was isolated from the latter reaction. Attempts to extend the ring expansion procedure to give (5, n = 4)
were not successful, only the hexahydrobenzaecine (5, \(n = 4 \)) [gum; 55% yield; \(M^+ 358.2255 \); IR (liquid film), 3420 (OH), 2205 (CN) cm\(^{-1}\); \(\lambda_{\max} \) (CH\(_3\)OH), 286 (c 3906), 240 (c 8625) nm; \(\delta \) (CDCl\(_3\)), 6.70, 6.66 (2 x 1H, 2s, 2 x ArH), 6.35 (1H, s, olefinic H), 3.88 (6H, s, 2 x OCH\(_3\)), 3.75-1.20 (21H, m, 10 x CH\(_2\) and OH)] being isolated.

\[
\text{CH}_3O-\begin{array}{c}
\begin{array}{c}
\text{CH}_3
\end{array}
\end{array}\begin{array}{c}
\begin{array}{c}
\text{Cl}^-
\end{array}
\end{array}\xrightarrow{\text{KOH}} \text{CH}_3O-\begin{array}{c}
\begin{array}{c}
\text{CH}_3
\end{array}
\end{array}\begin{array}{c}
\begin{array}{c}
\text{N}
\end{array}
\end{array}\xrightarrow{\text{CH}_3OH}
\]
(1)

\[
\text{CH}_3O-\begin{array}{c}
\begin{array}{c}
\text{CH}_3
\end{array}
\end{array}\begin{array}{c}
\begin{array}{c}
\text{N}
\end{array}
\end{array}\xrightarrow{\text{X-(CH\(_2\))_n-COOR}} \text{CH}_3O-\begin{array}{c}
\begin{array}{c}
\text{CH}_3
\end{array}
\end{array}\begin{array}{c}
\begin{array}{c}
\text{N}
\end{array}
\end{array}\xrightarrow{\text{ROOC(CH\(_2\))_n}}
\]
(2) or \(\text{CH}_2=\text{CH-COOCH}_3/-\text{2CH}_3OH \)

In the \(^1\text{H-n.m.r.} \) spectra (100 MHz, CDCl\(_3\), TMS) of (\(\xi a-c \)), diagnostic downfield signals centred at 85.28 (d, \(J \) 8.75 Hz), 4.65\(^{11} \), and 4.95 (d, \(J \) 6.25 Hz) respectively, were observed for the methine proton adjacent to oxygen and the aromatic ring. However, it was not possible to determine the stereochemistry of the B/C ring fusions in these systems from the coupling constants, although only one diastereomer appeared to be present in each case. Other signals in the n.m.r. spectra of (\(\xi a-c \)) were as follows: \((\xi a) \) 66.92 and 6.61 (2 x 1H, 2 s, 2 x ArH) 4.30-3.61 (4H, m, 2 x CH\(_2\)), 3.92 and 3.89 (2 x 3H, 2s, 2 x OCH\(_3\)), 3.40-0.79 (11H, m, 5 x CH\(_2\)) and H3a); \((\xi b) \) 67.20 and 6.60 (2 x 1H, 2s, 2 x ArH), 4.31-2.50 (8H, m, 4 x CH\(_2\)), 3.91 and 3.88 (2 x 3H, 2s, 2 x OCH\(_3\)), 2.20-1.00 (9H, m, 4 x CH\(_2\)) and H4a); \((\xi c) \) 67.15 and 6.67 (2 x 1H, 2s, 2 x ArH), 4.37-0.70 (19H, m, 9 x CH\(_2\)) and H5a), 3.93 and 3.90 (2 x 3H, 2s, 2 x OCH\(_3\)). In the infrared
Received, 8th January, 1981

ACKNOWLEDGEMENTS

We are also grateful to Dr. J. P. S. Hunter for his careful measurements and Dr. J. R. Broomer for his constructive suggestions. The work was supported by the Air Force Office of Scientific Research, ONR, and the National Science Foundation.