THE SYNTHESIS OF 9H-IMIDAZO[1,2-\(a\)]1,3-DIAZEPINES

Takushi Kurihara*, Tsutomu Tani, and Keiko Nasu
Osaka College of Pharmacy, 2-10-65, Kawai, Matsubara, Osaka 580, Japan

Abstract — Ethyl 7-acetyl-2,3-diphenyl-9H-imidazo[1,2-\(a\)]1,3-diazepine-5-carboxylate (8) and its acetate (7) were synthesized via the ring-expansion reaction of ethyl 5a-acetyl-4a,5a-dihydro-2,3-diphenyl-5H-cyclopropa[4a,5a]imidazo[1,2-\(a\)]pyrimidine-4a-carboxylate (3).

Relatively little work has been carried out on 1,3-diazepines with a benzene ring fused to the diazepine system. A few derivatives of pyrimido[2,1-b][1,3]-diazepine have been prepared. The synthesis of bicyclic guanidines such as 5,6,7,8-tetrahydro- or 2,3,5,6,7,8-hexahydro-1H-imidazo[1,2-\(a\)]1,3-diazepine derivatives, some of which showed the anticonvulsant and hypoglycemic activity, has also been reported. However, to our knowledge, 9H-imidazo[1,2-\(a\)]1,3-diazepines have not hitherto been reported. In this communication, we report the synthesis of the title compounds via the ring-expansion of cyclopropaimidazopyrimidine (2).

Recently, we reported the synthesis and ring transformation reaction of 6H-cyclopropa[5a,6a]pyrazolo[1,5-\(a\)]pyrimidines, which were readily obtained by the reaction of 6-acetyl-7-ethoxycarbonylpyrazolof1,5-\(a\)pyrimidine-3-carbonitrile with diazomethane under ice-cooling. Thus, we selected ethyl 6-acetyl-2,3-diphenylimidazo[1,2-\(a\)]pyrimidine-5-carboxylate (1) as a starting material for the synthesis of the title compounds. The compound 1 was synthesized by condensation of ethyl 3-ethoxymethylene-2,4-dioxovalerate with 2-amino-4,5-diphenylimidazole in refluxing ethanol in 86% yield. Treatment of 1 with a large excess of diazomethane under ice-cooling gave ethyl 5a-acetyl-4a,5a-dihydro-2,3-diphenyl-5H-cyclopropa[4a,5a]imidazo[1,2-\(a\)]pyrimidine-4a-carboxylate (2) [mp 193-195°; \(\nu\) max. (KBr) cm\(^{-1}\): 1750, 1720, 1660; \(\delta\) (DMSO-\(d_6\)) : 0.85 (3H, t, \(J=7\) Hz, CH\(_2\)CH\(_3\)), 1.85 and 2.75 (each 1H, each d, \(J=6\) Hz, CH\(_2\)), 2.39 (3H, s, COCH\(_3\)), 3.20-3.70 (2H, m, CH\(_2\)CH\(_3\)), 7.10-7.60 (10H, m, Ar-H), 8.61 (1H, s, C\(_6\)-H)] in 73% yield.
Next, hydrogenolytic ring-expansion reaction of \(\mathcal{Z} \) was examined. Catalytic hydrogenation of \(\mathcal{Z} \) over PtO\(_2\) under atmospheric pressure in dioxane gave 6,7-dihydro compound (\(\mathcal{Y} \)), mp 247-249° (CH\(_3\)CN). The NMR spectrum (DMSO-d\(_6\)) of \(\mathcal{Y} \) showed the presence of cyclopropane ring protons at \(\delta \) 1.92 and 2.36 (each 1H, each d, \(\mathcal{J}=6 \) Hz). On the other hand, when catalytic hydrogenation of \(\mathcal{Z} \) was carried out over 5% Pd-C under the same condition, ethyl 7-acetyl-5,6-dihydro-2,3-diphenyl-9H-imidazo[1,2-\(a\)]1,3]diazepine-5-carboxylate (\(\mathcal{Y} \)), mp 216-218° (EtOH) (Found: C, 72.08; H, 5.71; N, 10.51. C\(_{23}\)H\(_{23}\)N\(_3\)O\(_3\) requires C, 71.80; H, 5.78; N, 10.47), was interestingly obtained in 66.3% yield. The spectral data \(\nu \) max. (KBr) cm\(^{-1}\) : 3200-2600, 1750, 1610; \(\lambda \) max. (EtOH) nm (log \(\varepsilon \)) : 248 (4.19), 332 (4.26); \(\delta \) (DMSO-d\(_6\)) : 1.13 (3H, t, \(\mathcal{J}=7 \) Hz, CH\(_2\)CH\(_3\)), 1.78 (3H, s, COCH\(_3\)), 2.45 (1H, br d, \(\mathcal{J}=15 \) Hz, C\(_6\)-H), 3.90 (1H, d d, \(\mathcal{J}=15 \), 6 Hz, C\(_6\)-H), 3.90-3.90 (2H, m, CH\(_2\)CH\(_3\)), 4.90 (d d, \(\mathcal{J}=3 \) Hz, C\(_5\)-H), 6.76 (1H, br s, C\(_8\)-H), 7.10-7.50 (10H, m, Ar-H), 12.55 (1H, br s, NH) established its structure. An attempt to direct preparation of ethyl 7-acetyl-2,3-diphenyl-9H-imidazo[1,2-\(a\)]1,3]diazepine-5-carboxylate (\(\mathcal{E} \)) from \(\mathcal{Y} \) with DDQ oxidation was unsuccessful, only a tarry mixture being obtained. Thus, compound \(\mathcal{Y} \) was acetylated with acetic anhydride and pyridine to obtain \(\mathcal{Z} \), mp 158-160°. The fact that an attractive signal was seen in its NMR spectrum at \(\delta \) 8.28\(^7\) as singlet assignable to C\(_5\)-proton shifted downfield by the effect of N-acetyl group would strongly support the structure of \(\mathcal{Y} \). The acetate reacted with 1.2 equivalent moles of NBS in CCl\(_4\) in the presence of benzoyl peroxide to give ethyl 6-bromo-7,9-diacetyl-5,6-dihydro-2,3-diphenyl-9H-imidazo[1,2-\(a\)]1,3]diazepine-5-carboxylate (\(\mathcal{E} \)), mp 150-154° (benzene-ligroin), in a quantitative yield. Since the NMR spectrum of \(\mathcal{E} \) revealed C\(_5\)- and C\(_6\)-protons as two sets of doublets at \(\delta \) 4.97 and 5.81 with a coupling constant of 5 Hz\(^8\)), the configuration of \(\mathcal{E} \) was characterized as trans. Treatment of \(\mathcal{E} \) with triethylamine in refluxing benzene afforded ethyl 7,9-diacetyl-2,3-diphenyl-9H-imidazo[1,2-\(a\)]1,3]diazepine-5-carboxylate (\(\mathcal{Y} \)) as pale yellow crystals, mp 206-208°(EtOH), in 47.3% yield. Dehydrobromination of \(\mathcal{E} \) with DBU\(^9\) to \(\mathcal{Z} \) was achieved more readily. Thus, a mixture of \(\mathcal{E} \) and an equimolar amount of DBU in benzene was stirred at room temperature for 10 min, and \(\mathcal{Z} \) was isolated in 73% yield. Compound \(\mathcal{Z} \), on treatment with basic Al\(_2\)O\(_3\) in refluxing benzene, underwent hydrolysis of N-acetyl group to give \(\mathcal{E} \) as red crystals, mp 303-305° (CH\(_3\)CN) (Found: C, 71.99; H, 5.31; N, 10.54. C\(_{24}\)H\(_{21}\)N\(_3\)O\(_3\) requires C, 72.16; H, 5.30; N, 10.52) in 40% yield. The structure
determination of 7 and 8 were performed on the basis of spectral data as summarized in Table.

Spectral Data of 9H-Imidazo[1,2-a][1,3]diazepines (7 and 8)

<table>
<thead>
<tr>
<th>Compd. No.</th>
<th>v max. (KBr) cm⁻¹</th>
<th>λ max. (CH₃CN) (log ε) nm</th>
<th>δ (DMSO-d₆, J=7 Hz)</th>
<th>Mass (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1720</td>
<td>238 (4.47)</td>
<td>0.96 (3H, t) 2.48</td>
<td>7.10-7.50</td>
</tr>
<tr>
<td></td>
<td>1700</td>
<td>278 (4.27)</td>
<td>3.65 (2H, q) 2.50</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>1680</td>
<td>348 (3.16)</td>
<td></td>
<td>441 (M⁺)</td>
</tr>
<tr>
<td>8</td>
<td>3200-2600</td>
<td>248 (4.26)</td>
<td>0.84 (3H, t) 2.55</td>
<td>7.00-7.60</td>
</tr>
<tr>
<td></td>
<td>1710</td>
<td>292 (4.23)</td>
<td>3.55 (2H, q)</td>
<td>6.92</td>
</tr>
<tr>
<td></td>
<td>1650</td>
<td>427 (2.97)</td>
<td></td>
<td>399 (M⁺)</td>
</tr>
</tbody>
</table>

* Overlapped with benzene ring protons
We thank Dr. A. Numata and Mrs. Y. Tsukamoto of our college for measurements of NMR spectra and for microanalysis, respectively.

References and Notes

Received, 15th June, 1981