A NEW SYNTHESIS OF 1,4-BENZODIAZEPINE BY
THE PALLADIUM CATALYZED CARBONYLATION.

Minoru Ishikura and Masanao Terashima
Faculty of Pharmaceutical Sciences, Higashi Nippon Gakuen University
Ishikari-Tobetsu, Hokkaido 060-02, Japan

Miwako Mori and Yoshio Ban
Faculty of Pharmaceutical Sciences, Hokkaido University
Sapporo 060, Japan

It has been already reported that the insertion of carbon monoxide into o-bromo-
aminoalkylbenzene gave benzolactams by using zero-valent palladium complex as catalyst.\(^1\)

As an extension of this method, we now report a new synthetic route to 1,4-benzo-
diazepine(2) by the palladium catalyzed carbonylation of aryl halide(1) which was
accessible by the condensation of o-bromoaniline with amino acid.

According to this method, diazepam, known as a sedative and hypnotic agent, was
synthesized via aryl halide(3).\(^2\)

Moreover, the total synthesis of benzodiazepine bases, dehydrocyclopeptine, dl-cyclo-
peptine, dl-cyclopenin, and dl-cyclopenol, which were isolated from Penicillium
cyclopium Westling and related moulds, was achieved by the present method.

Further exploration of this new synthetic method was effected for the synthesis of
the more complex 1,4-benzodiazepine derivatives, pyrrolo-1,4-benzodiazepine antibiotics.
In this case, utilization of aryl halide(4), which was obtained from o-bromoaniline and
proline, was advantageous. The insertion of carbon monoxide into aryl halide(4) yielded
pyrrolo-1,4-benzodiazepine(5).

This approach was also applied to the synthesis of anthramycin(8) and SEN-215(9) via
aryl halide(6) and (7), respectively.

M. Ishikura, T. Ikeda and Y. Ban, Heterocycles, in press.