TOTAL SYNTHESIS OF ERGOT ALKALOIDS,
(+)-ELYMOCLAVINE AND (+)-ISOLYSERGOL

Ichiya Ninomiya, Chiyami Hashimoto, and Toshiko Kiguchi
Kobe Women's College of Pharmacy,
Motoyamakita, Higashinada, Kobe 658, Japan

Abstract — Two of the hitherto untouched ergot alkaloids, (+)-elymoclavine and (+)-isolysergol, were synthesized according to the synthetic route involving enamide photocyclization.

There are two types of ergot alkaloids having an ergoline skeleton depending on the position of double bond, namely, 8- and 9-ergolene structures\(^1\), of which the stable alkaloids having 9-ergolene structure form a major group including lysergic acid, lysergol, and lysergine, thus having been picked as the major targets for their syntheses. On the contrary, the unstable group of alkaloids having 8-ergolene structure contain relatively few members of alkaloids such as paspalic acid, elymoclavine and agroclavine, of which only agroclavine had been synthesized\(^2\) while the other two have so far eluded from attack of synthetic chemists. Furthermore, elymoclavine is regarded as a key intermediate in the biosynthetic pathways to ergot alkaloids\(^1\). We now report the first total synthesis of two alkaloids, (+)-elymoclavine and (+)-isolysergol, in addition to an alternative synthesis\(^2\) of (+)-lysergine.

We picked the photocyclized pentacyclic lactam (2) as our starting compound which, as described previously, was readily prepared by reductive photocyclization of the enamide (1) in good yield\(^3\). Oxidative ring opening of the dihydrofuran ring was achieved first by ozonolysis followed by lithium aluminum hydride reduction to yield the N-benzyl-1,3-diols (3) as a C/D-cis and trans-mixture, which were separated. The C/D-trans-N-benzyl derivative (3a) thus obtained in 56% yield [δ 4.45 and 3.86 (each d, J=14.5Hz, CH₂Ph), 4.02 (dd, J=10 and 5Hz, 9-H), 3.10 (t, J=10Hz, 10-H), 2.10 (ddd, J=12, 10, and 2Hz, 5-H), and 1.36 (q, J=12Hz, 4ax-H)], was treated with palladium on charcoal in hydrogen stream for
debenzylation to give the debenzylated amine (3b) δ [CDCl$_3$-CD$_3$OD (1:1)] 4.02 (dd, $J=10$ and 5 Hz, 9-H), 3.00 (t, $J=10$ Hz, 10-H), 2.15 (ddd, $J=12$, 10, and 2 Hz, 5-H), and 1.37 (q, $J=12$ Hz, 4ax-H), which was acetylated in the presence of pyridine under an ice-cooling temperature to afford the corresponding N,O-diace-

tate (4a) ν max 1730 (OAc) and 1650 (NAC) cm$^{-1}$; δ 4.01 (m, 9-H), 2.84 (t, $J=10$ Hz, 10-H), and 1.39 (q, $J=12$ Hz, 4ax-H) in 89 % yield. Treatment of this N,O-diace-
tate (4a) with thionyl chloride in a benzene solution under refluxing temper-

ture for 1 h afforded the 9α-chloro substituted derivative (6) ν max 1740

(OAc) and 1660 (NAC) cm$^{-1}$; δ 4.96 (br s, 9-H), 3.25 (br d, $J=10$ Hz, 10-H), and 1.41 (q, $J=12$ Hz, 4ax-H) as a major product in 65 % yield along with the dehy-
drated 8-ergolene derivative (5a) ν max 1730 (OAc) and 1650 (NAC) cm$^{-1}$; δ 6.31

(br s, 9-H) and 1.51 (q, $J=12$ Hz, 4ax-H) as a minor in 18 % yield, which were separated by preparative t.l.c. Removal of two acetyl groups on both nitrogen

and oxygen in (5a) was readily achieved by the treatment with small amount of hydrochloric acid in methanol. The product (5b) thus obtained has the structure corresponding to 2,3-dihydroelymoclavine (5b) δ 6.30 (br s, 9-H) and 1.55 (q, $J=12$ Hz, 4ax-H). The conversion of (5b) into elymoclavine (9) was done by dehy-
drogenation with phenylseleninic anhydride4 in 20 % yield. Thus, the final pro-
duct (9) was found to be completely identical with the authentic sample of natu-
ral alkaloid elymoclavine5 upon direct comparison.

On the other hand, the major product (6) obtained by the treatment with thionyl
chloride on the N,O-diace-
tate (4a) was used for its conversion into (±)-isoly-
sersergol (10). Treatment of the 9α-chloro derivative (6) with DBU afforded the elimi-
ated diacetate (7a) ν max 1740 (OAc) and 1660 (NAC) cm$^{-1}$; δ 6.38 (br s, $J(W1/2)=10$ Hz, 9-H), 2.84 (br d, $J=12$ Hz, 5-H), and 1.36 (q, $J=12$ Hz, 4ax-H) with a 9-ergolene structure in 98 % yield. Deacetyla-
tion of (7a) with hydrochloric

acid in methanol yielded the corresponding deacetylated product (7d), [δ [CDCl$_3$

-CD$_3$OD (2:1)] 6.41 (br d, $J=5$ Hz, 9-H), 2.97 (br d, $J=12$ Hz, 5-H), and 1.34 (q, $J=12$ Hz, 4ax-H)], which was dehydrogenated with phenylseleninic anhydride to give (±)-isolysergol (10) in 30 % yield. The identity of the product (10) with natu-
ral alkaloid elymoclavine6 was established by direct comparison.

Alternatively, the conversion of (7d) into (±)-isolysergol (10) was convenient-
ly achieved by the following treatments. Partial acetylation of (7d) with ace-
tic anhydride in acetic acid in the presence of conc hydrochloric acid\(^7\) afforded the O-acetate (7c) which was then dehydrogenated by the treatment with a mixture of tert-butyl hypochlorite, dimethyl sulfide and triethylamine in a dichloromethane solution followed by the sodium ethoxide treatment\(^8\), thus completed the preparation of (\(\ddot{z}\))-isolysergol (10) in 46 % overall yield.

In addition to the above first synthesis of two alkaloids, we have added an alternative synthesis\(^2\) of (\(\ddot{z}\))-lysergene from the intermediary N,O-diacetate (4a). Mesylation of (4a) afforded the corresponding 9-mesylate (4b). Base treatment of the 9-mesylate (4b) yielded the doubly eliminated N-acetate (8a) \(\nu_{\text{max}}\) 1650 (NAc) cm\(^{-1}\); 8.682 (br s, 9-H), 5.10 and 4.99 (each br s, C=CH\(_2\)), and 1.50 (q, J=12Hz, 4ax-H)) and the N-acetate (7b) \(\nu_{\text{max}}\) 1650 (NAc) cm\(^{-1}\); 8.642 (br d, J= 6Hz, 9-H), 2.88 (br d, J=12Hz, 5-H), and 1.41 (q, J=12Hz, 4ax-H)) in 16 and 24 % respective yields, the former (8a) of which was then readily deacetylated to give the dihydrolysergene (8b). The conversion of the indoline moiety into the indole, therefore, to (\(\ddot{z}\))-lysergene was similarly\(^4\) achieved. The product (11) was identical with natural lysergene upon direct comparison.

ACKNOWLEDGEMENT

We thank Professor S. Yamatodani of Kobe Women's University and Dr. S. Agurell of Astra Läkemedel AB for the precious samples of natural alkaloids. We are also grateful to Sir Derek H. R. Barton for his kind advice.

REFERENCES

N.m.r. spectra were measured at 200 MHz in CDCl\(_3\) solution with TMS as internal standard, unless otherwise noted.

2 T. Kiguchi, C. Hashimoto, and I. Ninomiya, Heterocycles, 1984, 22, 43.

Received, 9th January, 1984