ON CARDIOACTIVE STEROIDS XIV.1 THE PREPARATION OF (21R)-21METHYL-
DIGITOXIN

Thomas Y. R. Tsai and Karel Wiesner\

Natural Products Research Centre, University of New Brunswick,
Bag Service #45222, Fredericton, New Brunswick, Canada E3B 6E2

Abstract — A high yield direct conversion of digitoxin into
(21R)-21methyldigitoxin is described.

In previous communications of this series we have described the application of
our "furan methodology" to the synthesis of a variety of cardenolide and
bufadienolide analogues.2 Several of these compounds when tested1 in the form
of their glucosides turned out to be not only fully active, but displayed a
much wider margin of safety than the natural digitalis glycosides currently
used in therapy. It next became desirable to attach the natural digitoxin
tridigitoxoside sidechain to our best steroid derivatives. It was believed
that this would result in a prolongation of the duration of action and a
favourable modification of several other pharmacologic parameters. A general
solution of this problem is laborious and similar to the total synthesis of
digitoxin.1 However, in one specific case we were able to reach the desired
objective in a very simple and highly efficient manner.

One of our best steroids is (21R)-21methyldigitoxigenin3 which, in the form of
its glucoside, is practically equipotent with digitoxin, but shows a 20 times
wider margin of safety. We wish to report now the preparation of the tri-
digitoxoside 5 of this compound.

\begin{quote}
1All pharmacological tests were performed under the direction of Professor Rafael
Mendez, Instituto Nacional de Cardiologia Ignacio Chavez, Mexico City. The re-
sults of these tests are being published by Professor Mendez and his colleagues.
\end{quote}
The starting material was the furyl derivative \[^1 \text{fur} \] easily prepared from digitoxin by reduction with DIBAL. Compound \[_1 \] was heated in dioxane with sodium hydride and 18-crown-6 ether for 6 h, followed by addition of an excess of benzyl bromide and another 18 h of reflux. Work-up and chromatography gave the pure perbenzylated compound \[_2 \] as a foam, homogeneous in several T.L.C. systems, in a yield of 90%; ir (CHCl\(_3\)) \(\nu_{\text{max}} \): no hydroxyl absorption; pmr (CDCl\(_3\)) \(\delta \): 7.30, 7.32, 7.36, 7.38 (m, 25H, aromatic \(H \)), 7.14, 7.10, 6.18 (broad s, 1H each, furan), 1.28 (d, \(J = 6 \) Hz, 3H, 1CH\(_3\) in digitoxose), 1.19 (d, \(J = 6 \) Hz, 6H, 2CH\(_3\) in digitoxose), 0.96 (s, 3H, 19-CH\(_3\)).

The perbenzylated compound \[_2 \] was dissolved in CHCl\(_3\) and oxidized with \(m \)-chloroperbenzoic acid in the presence of acetic acid and sodium acetate. After work-up the two regioisomeric lactols \[_3a \] and \[_3b \] were readily separated by chromatography and \[_3a \] was used for the next step without any further purification. The yield of \[_3a \] and \[_3b \] was 92% and the materials were obtained in a ratio 2:1. The regioselectivity of the oxidation is thus much smaller than observed in our digitoxigenin synthesis.\(^2\) The materials \[_3a \] and \[_3b \], besides being mixtures of C21-epimers, contain also significant amounts of the corresponding aldehyde tautomers.

The lactol mixture \[_3a \] in THF was cooled to \(-78^\circ\)C and treated with an excess of methylithium for 30 min. The solution was then acidified and worked up. The major epimer \[_4a \] was separated by chromatography on silicic acid in a yield of 86%. The product was homogeneous in several T.L.C. systems and remained glassy.

We did not succeed to separate the minor epimer \[_4b \] as a pure compound. The estimated ratio of \[_4a/4b \] was 10:1; ir (CHCl\(_3\)) \(\nu_{\text{max}} \): 1706 (C=O), 1625 cm\(^{-1}\) (C=C), no hydroxyl absorption; pmr (CDCl\(_3\)) \(\delta \): 7.30, 7.33, 7.35, 7.37 (m, 25H, aromatic \(H \)), 5.69 (broad s, 1H, C22-\(H \)), 3.36 (d, \(J = 7 \) Hz, 3H, C21-CH\(_3\)), 1.28 (d, \(J = 6 \) Hz, 3H, 1CH\(_3\) in digitoxose), 1.20 (d, \(J = 6 \) Hz, 6H, 2CH\(_3\) in digitoxose), 1.03 (s, 3H, 18-CH\(_3\)), 0.97 (s, 3H, 19-CH\(_3\)). The benzylated derivative \[_4a \] was hydrogenated in a mixture of ethanol and benzene (2:1) over 10% Pd/C. Preparative T.L.C. on silicic acid gave the pure epimer \[_5 \] in a yield of 82%. After crystallization from chloroform-ether, compound \[_5 \] melted at 243-245°C; \([\alpha]_D\)\(^{24} \) +27.15° (CHCl\(_3\)); ir (CHCl\(_3\)) \(\nu_{\text{max}} \): 3550 (OH), 1710 (C=O), 1630 cm\(^{-1}\) (C=C); pmr (CDCl\(_3\)) \(\delta \): 6.16 (broad s, C22-\(H \)), 4.90 (m, \(W_s = 20 \) Hz, 4H, 3 anomeric \(H \)).
1. \(R_1 = \) \(\text{[structure]} \), \(R_2 = H \)

2. \(R_1 = \) \(\text{[structure]} \), \(R_2 = -\text{CH}_2-\text{C}_6\text{H}_5 \)

3a. \(R_1 = \) \(\text{[structure]} \), \(R_2 = -\text{CH}_2-\text{C}_6\text{H}_5 \)

3b. \(R_1 = \) \(\text{[structure]} \), \(R_2 = -\text{CH}_2-\text{C}_6\text{H}_5 \)

4a. \(R_1 = \) \(\text{[structure]} \), \(R_2 = -\text{CH}_2-\text{C}_6\text{H}_5 \)

4b. \(R_1 = \) \(\text{[structure]} \), \(R_2 = -\text{CH}_2-\text{C}_6\text{H}_5 \)

5. \(R_1 = \) \(\text{[structure]} \), \(R_2 = H \)
and C21-H), 1.42 (d, J = 7 Hz, 3H, C21-CH$_3$), 1.29 (d, J = 6 Hz, 3H, CH$_3$ in digitoxose), 1.23 (d, J = 6 Hz, 6H, 2 CH$_3$ in digitoxose), 0.93 (s, 3H, 19-CH$_3$), 0.89 (s, 3H, 18-CH$_3$).

Mild hydrolysis of 5 (room temperature, methanol-benzene-0.01M HCl) yielded (21R)-21methyl-digitoxigenin (mp 246-247°C), identical in all respects with an authentic sample of this compound. The crystal and molecular structure of our original sample of this material has been solved by E. J. Gabe and thus the (21R) configuration can be assigned to it with certainty. Consequently, the (21R)-21methyl-digitoxin structure can be rigorously assigned to our final product 5.

ACKNOWLEDGEMENTS

We wish to thank the Natural Sciences and Engineering Research Council, Ottawa, the New Brunswick Heart Foundation, and Advance Biofactures Corporation, New York, for the support of these studies. We also wish to thank Dr. E. J. Gabe, National Research Council, Ottawa, for solving the structure and configuration of the epimeric C21-methyl-digitoxigenins.

REFERENCES

Received, 27th March, 1984