HIGH PRESSURE APPROACH TO THE SYNTHESIS OF 7-PHOSPHANORBORDADIENES FORM λ^5-PHOSPHOLE OXIDES AND DIALKYL ACETYLENEDICARBOXYLATES

Kiyoshi Matsumoto,* Shiro Hashimoto, and Shinichi Otani
Department of Chemistry, College of Liberal Arts & Sciences
Kyoto University, Kyoto 606, Japan
Takane Uchida
Faculty of Education, Fukui University, Fukui 910, Japan

Abstract—Reactions of 1,2,3,4,5-pentaphenylphosphole oxide ($4a$) with dimethyl and di-t-butyl acetylenedicarboxylates ($2a$, b) under high pressure afford the tetraphenylphthalates (La, b) along with the 7-phosphanorbordadiene derivatives ($6a$, b). The latter adducts have proven too unstable to be submitted to deoxygenation under conventional conditions.

7-Phosphanorbornenes have attracted a considerable attention because of their unusual properties. For example, they display a 31P resonance at very low field for a phosphine and easy syn to anti isomerization at phosphorus in protic solvents.\(^1\) Attempts to synthesize even more interesting 7-phosphanorbordadienes by reaction of an acetylenic dienophile with a monomeric λ^5-phosphole derivative\(^2\) have been unsuccessful, leading to loss of the phosphorus bridge in the adduct.\(^3\) Recently, this loss was avoided by using λ^5-phosphole-P M(CO)\(_5\) complexes [M=Cr, Mo, W] in place of phosphole oxides.\(^1\) In view of the recent successful formation of 7-oxa- and 7-thia-bicyclo[2.2.1]heptenes ($\sim{}$) from furans\(^4\) and thiophene,\(^5\) 7-aza-8-oxobicyclo[2.2.2]-
octadienes (isoquinuclidienones) (2) from 2-pyridones,6 and 7-oxa-8-oxobicyclo-[2.2.2]octenes (3) from 2-pyrones7 at high pressures, it was anticipated that elevated pressures might induce the Diels-Alder reaction of a monomeric phosphole oxide with an acetylenic dienophile under milder conditions, e.g. at lower temperature thus leading to the adduct without loss of the phosphorus bridge. The present report describes formation of such a primary adduct from 1,2,3,4,5-pentaphenylphosphole-1-oxide and dimethyl or di-\textit{t}-butyl acetylenedicarboxylate, albeit not in pure state owing to their instability.

Reaction of 1,2,3,4,5-pentaphenylphosphole-1-oxide (6\textsubscript{a}) with dimethyl acetylenedicarboxylate (5\textsubscript{a}) at 10 kbar and room temperature (ca. 16-18 °C)8 resulted in the formation of the mixture of the 7-phosphanorbornadiene P-oxide (6\textsubscript{a}) and dimethyl 3,4,5,6-tetraphenylphthalate (7\textsubscript{a}).9 The primary adduct (6\textsubscript{a}) decomposed gradually during chromatographic separation and therefore could not be isolated in pure form. However, the 13C- and 31P-NMR spectra of this crude product (6\textsubscript{a}) (ca. 16% yield based on 1H-NMR) show doublets at 69.9 ppm (\textit{J}_{	ext{C-P}}=53 \text{ Hz at 90 MHz}) and 105.5 ppm (from external H\textsubscript{3}P\textsubscript{O}\textsubscript{4}) probably due to the bridgehead carbon and the phosphorus, respectively. The crude product (6\textsubscript{a}) was completely converted to 7\textsubscript{a} upon heating in refluxing benzene or on standing at room temperature. A similar crude adduct (6\textsubscript{b})10 and di-\textit{t}-butyl 3,4,5,6-tetraphenylphthalate (7\textsubscript{b})11 were obtained from 6\textsubscript{a} and
di-t-butyl acetylenedicarboxylate (5b) at 9 kbar. It has been claimed that the 7-phosphanorbornadiene P-oxide (6c) was prepared as a stable solid (mp 187-188 °C) in an indirect route involving the reaction of 1,2,5-triphenylphosphole-1-oxide (4b) with bromomaleic anhydride followed by esterification with MeOH-conc.H2SO4. The "6c" was also reported to undergo cheletropic extrusion of the phosphorus bridge upon an attempted deoxygenation with trichlorosilane giving dimethyl 3,6-diphenyl-1,2-dihydropthalate (9). In contrast, high pressure reaction of 4b with 5a produced only dimethyl 3,6-diphenylphthalate (7c) as an isolable product along with the recovered (4b) in 68% and 31% yields respectively. An examination by 13C- and 31P-NMR of the crude reaction mixture immediately after release of pressure did not indicate any evidence of the presence of 6c. Analogous attempts to isolate the 7-phosphanorbornadiene P-oxide (6d) from 4b and 5b by employing high pressure technique were unsuccessful resulting in loss of Ph-P-O to produce 14 in 60% yield. Thus, it is probably dimethyl 7-phosphanorborne-5,6-dicarboxylate P-oxide (8) that has been previously described as 6c. Indeed, the adduct 8 obtained from 4b and dimethyl maleate at 8 kbar had mp 189-190 °C. Furthermore, attempted deoxygenation of 8 with trichlorosilane under the reported conditions gave dimethyl 3,6-diphenyl-1,2-dihydropthalate (9) in virtually quantitative yield.

![Diagram](image)

The difference in thermal stability between pentaphenyl adducts (6a, 9) and triphenyl adducts (6c, 9) may be due to the greater steric hindrance involved in the formation of tetrphenylphthalates (7a, 9) from the former.

Further efforts are continuing to obtain a more stable 7-phosphanorbornadiene system by using sterically hindered dienophiles.

ACKNOWLEDGEMENT This work was partially supported by Research Grant (to T. U.) from the Ministry of Education (Grant-in-Aid, No.59540304).

—2715—
REFERENCES

b) For a review of organic synthesis under high pressure and for a description of the high pressure apparatus employed in this study, see: K. Matsumoto, A. Sera, and T. Uchida, Synthesis, in press.

c) General Procedure: A mixture of phosphole-1-oxide (1 mmol) and acetylenedicarboxylic acid ester (2 mmol) is diluted to 8 ml with dichloromethane in Teflon tube and stored at 9-10 kbar and room temperature (ca. 16-18 °C) for 4 days. After release of pressure, the reaction mixture is immediately subjected to column chromatography on SiO₂ with benzene-ethyl acetate.

9. Mp 274 °C [lit. mp 261 °C: W. Dilthey, J. Thewalt, and O. Trosken, Chem. Ber. 57, 1959 (1935)]; IR(KBr) 1720 cm⁻¹; ¹H-NMR(CDCl₃) δ 3.47(s, 6H, CH₃), 6.50-7.25(complex, 20H, aromatic-H); ¹³C-NMR(CDCl₃) δ 52.2(q, CH₃), 125.9, 126.8, 127.4, 129.7, 130.8(d, aromatic CH), 132.2, 138.6, 138.7, 139.3, 143.2(s, aromatic C), 168.6(s, C=O).

10. About 10% yield from ¹H-NMR analysis; ¹³C-NMR(CDCl₃) δ 68.3(d, J_C-F=54 Hz at 90 MHz); ³¹P-NMR(CDCl₃) 104.7 ppm from external H₃PO₄. The stereochemical assignment of 6a,b at the phosphorus atoms is only based upon steric consideration.¹
11. Mp 259-260 °C; IR(KBr) 1715 cm⁻¹; ¹H-NMR(CDCl₃) δ 1.16(s, 18H, CH₃), 6.50-7.25(complex, 20H, aromatic-H); ¹³C-NMR(CDCl₃) δ 27.4(q, CH₃), 82.1(s, (CH₃)₂C), 127.4, 126.5, 126.7, 127.2, 130.3, 130.9(d, aromatic-CH); 133.2, 138.5, 138.9, 139.0, 142.3(s, aromatic-C), 167.4(s, C=O).

13. Mp 191-192 °C; IR(KBr) 1710, 1738 cm⁻¹; ¹H-NMR(CDCl₃) δ 3.60(s, 6H, CH₃), 7.43(s, 12H, aromatic-H); ¹³C-NMR(CDCl₃) δ 52.3(q, CH₃), 82.2(s, (CH₃)₂C), 127.4, 128.2, 128.4, 131.6(d, aromatic-CH), 132.1, 139.7, 139.9(s, aromatic-C), 167.3(s, C=O).

14. Mp 178-180 °C; IR(KBr) 1715 cm⁻¹; ¹H-NMR(CDCl₃) δ 1.26(s, 18H, CH₃), 7.43(s, 12H, aromatic-H); ¹³C-NMR(CDCl₃) δ 27.5(q, CH₃), 82.2(s, (CH₃)₂C), 127.4, 128.1, 128.6, 130.7(d, aromatic-CH), 133.3, 139.4, 140.3(s, aromatic-C), 167.3(s, C=O).

15. Mp 189-190 °C; IR(KBr) 1725, 1740(sh) cm⁻¹; ¹H-NMR(CDCl₃) δ 3.87(s, 6H, CH₃), 4.68(d, J₃-H=1.80 Hz at 90 MHz, 2H, CH), 6.93-7.75(complex, 17H, CH= and aromatic-H); ¹³C-NMR(CDCl₃) δ 51.8(q, CH₃), 55.1(d, J₃-C₂=13.2 Hz, CH), 58.8(d, J₃-C=64.7 Hz, bridge head C), 127.0-134.1(complex, aromatic and C=C carbons), 170.3(d, J₃-C₃=16.2 Hz, C=O). The stereochemical assignment of 8 at the phosphorus is tentative being based on steric consideration.

16. Mp 115-116 °C; IR(KBr) 1740, 1720(sh) cm⁻¹; ¹H-NMR(CDCl₃) δ 3.56(s, 6H, CH₃), 4.26(s, 2H, CH), 6.49(s, 2H, CH=), 7.15-7.60(complex, 10H, aromatic-H); ¹³C-NMR(CDCl₃) δ 46.8(q, CH₃), 52.1(d, CH), 123.9, 125.4, 128.3, 128.5(d, aromatic-CH and CH=), 133.4, 139.3(s, aromatic-C and C=), 171.7(s, C=O).

Received, 20th July, 1984