(-)-9-DEMETHYLTUBULOSINE, AN ALKALOID FROM *ALANGIUM VITIENSE* (A. GRAY) BAILLON
(ALANGIACEAE)

Christiane Kan-Fan, Raimundo Freire, and Henri-Philippe Husson
Institut de Chimie des Substances Naturelles du C.N.R.S.,
91190 Gif-sur-Yvette, France

Tozo Fujii and Masashi Ohba
Faculty of Pharmaceutical Sciences, Kanazawa University,
Takara-machi, Kanazawa 920, Japan

Abstract - The structure of (-)-9-demethyltubulosine, isolated from the trunk bark of
Alangium vitiense (Alangiaceae), was determined from an analysis of its MS, 1H and 13C
nmr data and by a direct comparison with the synthetic racemic alkaloid.

Several species of the genus *Alangium* have been studied chemically $^{1-6}$. Previously we have
reported the oncostatic effect on lymphoid murine tumors of alkaloids from the trunk bark of *A.
vitiense* 5. Further work in the studies of these alkaloids has resulted in the isolation of
tubulosine 1 (yield 0.5 g/kg) and a new alkaloid 2 (yield 0.3 g/kg) whose structure is now shown
to correspond to (-)-9-demethyltubulosine.

Alkaloid 2 isolated in crystalline form (mp 200°C (CHCl$_3$); [a]20-40° (c = 1, pyridine)]
possessed the molecular formula C$_{28}$H$_{35}$N$_3$O$_3$ on the basis of the microanalytical data. Signals for
28 carbon atoms were also observed in the 13C nmr spectrum (Me$_2$SO-d_6) of this molecule. The uv
spectrum [λ_{\max} nm (log e) : 278 (4.1) in EtOH and 284 (4.1), 306 (sh, 3.92), 326 (sh, 3.60) in
EtOH + NaOH] indicated a tubulosine structure 1 bearing a phenolic group in the
benzoquinolinizidine ring system 6. This feature was confirmed by the observation of peaks at m/e
461 (M$^+$), 258 (benzoquinolinizidine moiety) and 187 (β-carboline moiety) in the mass spectrum of
2. It thus appeared that alkaloid 2 was related or identical to demethyltubulosine 3 previously
isolated from *A. lamarcki* 6. However, at that time it was not possible to determine whether the
phenolic OH group in alkaloid 3 was situated at the position C-9 or C-10. Total synthesis of the
Fig. 1. CD Curves of 9-Demethyltubulosine (2) and 10-Demethyltubulosine (3) in Ethanol at 18°C
racemic alkaloid subsequently established the structure of the natural product as 10-demethyl-
tubulosine 3.

Although 13C nmr has been used to determine the position of one or more methoxy or hydroxy
groups in the aromatic ring of a number of different alkaloid types, the existing data do not
permit the determination of the substitution pattern in molecules where these two
functionalities co-occur (i.e. as in 2 or 3). For this reason we have prepared the model
compounds 4-6 8 and studied their 13C nmr spectra.

We observed that with respect to compound 4 the phenolic OH in compounds 5 and 6 produces a
deshielding of ca. 3-4ppm in the C-8 and C-11 resonances, respectively (see Table 1). The same
differences were also found in the positions of C-8 and C-11 resonances in the natural compounds
1-3 which enabled us to suggest that alkaloid 2 possesses the 9-demethyl structure.

Definite proof for the structure 2 was obtained by a direct comparison of the natural product
with synthetic (\pm)-9-demethyltubulosine 9 and its C-1' epimer. A part from the chiroptical
property, alkaloid 2 was identical in all respects to synthetic (\pm)-9-demethyltubulosine.

Tentative assignment of the absolute configuration of 2, as depicted in the formula, was made by
a comparison of CD curves of 2 and 3 10 (Fig. 1).

The isolation of only 9-demethyltubulosine 2 as one of the major alkaloid from \textit{A. vitiense} is
interesting in view of the fact that its 10-demethyl isomer occurs in another species of the
same genus 6.

\begin{table}
<table>
<thead>
<tr>
<th>Carbon</th>
<th>1a)</th>
<th>(\pm) 4a)</th>
<th>2b)</th>
<th>(\pm) 5a)</th>
<th>(\pm) 6b)</th>
<th>(\pm) 6a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-8</td>
<td>111.8</td>
<td>111.6</td>
<td>115.2</td>
<td>115.1</td>
<td>111.9g)</td>
<td>112.2f)</td>
</tr>
<tr>
<td>C-9</td>
<td>147.1c)</td>
<td>147.9d)</td>
<td>144.8e)</td>
<td>145.0f)</td>
<td>144.2h)</td>
<td>146.1i)</td>
</tr>
<tr>
<td>C-10</td>
<td>146.9c)</td>
<td>147.6d)</td>
<td>145.8e)</td>
<td>146.0f)</td>
<td>145.7h)</td>
<td>144.3i)</td>
</tr>
<tr>
<td>C-11</td>
<td>109.3</td>
<td>108.1</td>
<td>109.7</td>
<td>107.9</td>
<td>112.1g)</td>
<td>111.2i)</td>
</tr>
</tbody>
</table>

a) Run in CDCl\textsubscript{3} at 22.63 MHz with TMS as an internal standard.
b) Run in DMSO-\textsubscript{d\textsubscript{6}} at 25.00 MHz with TMS as an internal standard.
c-i) Assignments indicated by a given superscript may be reversed.
REFERENCES

10. We are grateful to Dr. A. Popelak, Boehringer Mannheim GmbH, Mannheim, Germany, for the generous gift of a natural sample of 3.

Received, 21st January, 1985