REACTION OF PYRIDINIUM BIS(METHOXYCARBONYL)METHYLID WITH DIPHENYL-CYCLOPROPENETHIONE: A REVISED STRUCTURE FOR ONE OF THE PRODUCTS

Kiyoshi Matsumoto,* Takane Uchida,† Yoshiko Yagi,‡ Hiroshi Tahara,† and R. Morrin Acheson§

College of Liberal Arts & Sciences, Kyoto University, Kyoto 606, Japan, †Faculty of Education, Fukui University, Fukui 910, Japan, and §Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QD, U. K.

Abstract — A structure for one product from the reaction of pyridinium bis(methoxycarbonyl)methylid and diphenylcyclopropanethione is revised to be 5,5-bis(methoxycarbonyl)-2,3,6,7-tetraphenyl-5H-thieno[2,3-e]thiopyrane.

Cyclopropenes and related compounds are of great interest as synthetic reagents and reports regarding their use are growing steadily. This synthetic strategy often provides a one step route leading to unique types of compounds which are otherwise difficult to obtain.

Diphenylcyclopropenethione (DPPS) undergoes nucleophilic attack by pyridinium methylids yielding various types of products. For example we have described the reaction of pyridinium bis(methoxycarbonyl)methylid (1) with DPPS (2) in acetonitrile at room temperature which gave the three compounds, 3, 4, and "5"; the structure of the last compound was based upon its 1H-NMR and mass spectra and on mechanistic considerations.
The 13C-NMR spectrum of "5" and new results obtained with 13C enriched pyridinium bis(methoxycarbonyl)methylid have led us to revise the earlier proposed structure. The 13C-NMR spectrum of "5" showed only one quaternary sp3 carbon at δ 66.1 ppm instead of the two demanded by \sim and apparently only one methyl carbon at 53.5 ppm. It also showed 10 sp2 carbon atoms unattached to H along with 6 resonances corresponding to sp2 carbon atoms attached to H. 4 The 13C-NMR spectrum of "5" obtained from 13C enriched (ca. 5 %) pyridinium bis(methoxycarbonyl)methylid (6) 5 and DPPS, showed no enhancement other than that of the C=O carbon atom. Furthermore, the mass spectrum of "5" showed, besides the molecular ion (m/z 574), fragments at 515 and 456 due to the successive loss of two methoxycarbonyl groups. Thus, the structure \sim, with a plane of symmetry, is in better agreement with these data than the previously proposed structure \sim, and is also consistent with the 1H-NMR data.

The formation of \sim can be readily rationalized in the Scheme below.
REFERENCES AND NOTES

4. The tentative assignment is as follows:

 \[
 \begin{align*}
 \text{sp}^2 \text{-C with H} & \quad \begin{pmatrix}
 127.8 & 128.3 \\
 128.6 & 128.8 \\
 129.9 & 130.6
 \end{pmatrix} \\
 \end{align*}
 \]

5. 13C Enriched pyridinium bis(methoxycarbonylmethylid) methylid was prepared according to the following Scheme using ca. 9% 13C enriched BaCO$_3$.

\[\text{BaCO}_3 \xrightarrow{\text{H}_2\text{SO}_4} \text{CO}_2 \xrightarrow{\text{CH}_3\text{MgI}} \text{CH}_3\text{COOH} \xrightarrow{\text{Br}_2} \text{BrCH}_2\text{COOH} \xrightarrow{\text{NaCN}} \]

\[\text{NCCH}_2\text{COOH} \xrightarrow{\text{CH}_3\text{OH/HCl}} \text{CH}_2\text{(COOCH}_3\text{)}_2 \xrightarrow{\text{Br}_2} \text{BrCH}(\text{COOCH}_3\text{)}_2 \]

\[\text{[+N-Cl(COOCH}_3\text{)]}_2 \]

Received, 17th April, 1985